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Massive graphs - modern perspective
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- Can we quickly test if this graph has some
properties?
* What is quickly if graph has billions of nodes?
* Quickly ~ better than in ©(n) time!
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“in the castle” vs. “out of the castle” =
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Distinguish inputs that have specific property
from those that are far from having the property

Benefits:
- May be the natural question fo ask
- May be just as good when data constantly changing

- Gives fast sanity check to rule out very "bad” inputs (i.e., restaurant
bills) or to decide when expensive processing is worth it
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An example:

- Is this book written in
English?

+ We (usually) don't have to
read entire book to make a
good guess
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Another example: e

. Given: list x;x,... x,
+ Question: is the list sorted?

+ Clearly requires Q(n) time
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Another example: e

. Given: list x;x,... x,

+ Question: is the list almost sorted?

- i.e., can change at most € fraction of list to make it
sorted

* Can test in O(1/€ - log n) time
- [Ergun, Kannan, Kumar, Rubinfeld, Viswanathan]
- best possible
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Property testing

» Classical decision problem:
- Given a property P and input instance I
- Does I has property P?

Often it's computationally hard (NP-

m—

complete/undecidable)
* What we want to study [relaxation]:

- Is T close to satisfy property P?

[ Can work fast even for NP-hard or undecidable

properttes



Property Testing definition i

Given input x
If x has the property , tester passes

+ If xise-far from any string that has the property ,
tester fails

error probability < 1/3

Notion of g-far depends on the problem;
Typically: one needs to change € fraction of the input
to obtain object satisfying the property

Typically we think about &
as on a small constant, say, € = 0.1



THE UNIVERSITY ‘@F

WARWICK

Property Testing definition

Given input x
If x has the property , tester passes

+ If xise-far from any string that has the property ,
tester fails

error probability < 1/3

* This is 2-sided-error tester
* 1-sided error: errs only for x being e-far

L)
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So, what is property testing

» Early motivation:
- Program checking
- Program verification
- Learning theory

Big boost (in theory)

- Probabilistically Checkable Proofs

» "Correctness of any proof in NP can be verified by
testing only O(1) positions in the proof and using only
O(log n) random bits"
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Properties of functions =

. Lineari’rg test [Blum Luby Rubinfeld] [Bellare Coppersmith Hastad
Kiwi Sudan] (various improvements by many others)

Ox,y f(x)+f(y)=f(x+y)
» Low total degree polynomial tests [Rubinfeld Sudan] [Arora
Safra] [Arora Lund Motwani Sudan Szegedy] [Arora Sudan] ...

» Functions definable by functional equations -
trigonometric, elliptic functions

» Groups, Fields
* Finite precision [Gemmell Lipton Rubinfeld Sudan Wigderson] ......
» Low complexity functions [Parnas Ron Samorodnitsky] .....

+ Useful in
- Program checking
- PCP constructions
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Properties of distributions: LA P

* some properties:
- are two given distributions similar or very different?
- approximate the entropy of a distribution
- are two random variables independent?

[Batu Fortnow Rubinfeld Smith White] [Batu
Dasgupta Kumar Rubinfeld][Batu Fischer Fortnow
Kumar Rubinfeld White]

+ access to samples of distribution, not explicit
probabilities
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[6oldreich Goldwasser Ron)

* Graph properties

* Hypergraph properties

* Monotonicity

- Set properties

* Geometric properties

- String properties

* Membership in low complexity languages

(regular languages, constant width branching
programs, context-free languages ...)



TTTTTTTTTTTTTTT DI~
X [ | |

Properties of gmphs A p

[6oldwasser, Goldreich, Ron)

* Graph properties:
- Colorability
- Not containing a forbidden subgraph
- Connectivity
- Acyclicity
- Rapid mixing
- Max-Cut Some of these properties
are NP-hard
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Graph properties

* Measure of being far/close from a property
» Is graph connected or is far from being connected?

T'hese two graphs are to be connectec




THE UNIVER SITY OF m“ﬁ
Graph properties mae

s
Z
5
7\
m

Measure of being far/close from a property
Is graph connected or is far from being connected?

far from being
connected
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1st definition A

Graph G is e-far from satisfying property P

If one needs to modify more than e-fraction of
entries in adjacency matrix to obtain a graph
satisfying P

O(1,0]|0]1
117011111
O(1,0]|0]1
O(1/0|0]|0
11111700
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Graph G is e-far from satisfying property P

If one needs to modify more than e-fraction of
entries in adjacency matrix to obtain a graph
satisfying P
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Graph G is e-far from satisfying property P

If one needs to modify more than e-fraction of

entries in adjacency lists to obtain a graph
satisfying P
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2" definition

Graph G is e-far from satisfying property P

If one needs to modify more than e-fraction of
entries in adjacency lists to obtain a graph
satisfying P
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What is the complexity (running-time)? “-=

* For simplicity:
- Complexity = number of accesses to the input
* Inadjacency matrix model:
- number of entries tested
- Oracle: is (x,y) in E?
* Inadjacency list model:

- number of edges tested
- Oracle: give me the ith neighbor of vertex v
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- We will discuss a few representative examples of
property testing algorithms for both models of
graphs

+ Some proofs will be given

+ Some won't (eg because they're too complex)

* You will have to do some proofs
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Part I
Adjacency matrix model




Adjacency matrix model —

- Accept every graph that satisfies property P

* Reject every graph that is e-far from property P

- &-far from P: one has to modify at least €n? entries of
the adjacency matrix to obtain a graph with property P

* Arbitrary answer if the graph doesn't satisfy P nor
is &-far from P

» Can err with probability < 1/3
- Sometimes errs only for "rejects”: 1-sided-error
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Adjacency matrix model

There are very fast property testers
They're very simple
- Typical algorithm:

*Select a random set of vertices U
‘Test the property on the subgraph induced by U

The analysis is (often) very hard

We understand this model very well

- mostly because of very close relation to
combinatorics

=)
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Adjacency matrix model

First example:
+ Test if a graph 6=(V,E) is planar

- We've already said: testing is "trivial” for sparse graphs ...



Adjacency matrix model

First example:
Test if a graph 6=(V,E) is planar

- We've already said: testing is "trivial” for sparse graphs ...

- If G is dense then it's certainly not planar

+ If G is sparse then it's not e-far from planar

- Every graph with less than €n?/2 edges is e-close to
planar: remove all its edges

How to distinguish between sparse graphs and
dense graphs?

L)
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Adjacency matrix model AP

Easy example:
+ Test if a graph is planar

" Checkif Gis sparse [if it has less than en?/2 edges] N
- If it's not thenreject G

- all planar graphs are sparse

- If it sparse then accept 6

\_ - every sparse graph can be "made planar”: remove all edges

- How to check if G has much less than en¢/2 edges?

» Randomly sample 2/= entries in the ad jacency matrix
- If all of them are O then accept
- Otherwise reject

-+ With probability 2/3 will give right answer




THE UNIVERSITY ‘@F

D
WARKIEE - Adjacency matrix model .
How to check if 6 has much less than en?/2 edges

Randomly sample 2/¢ entries in the adjacency matrix
* If all of them are O then accept
* Otherwise reject

Analysis:
- If G is planar then |E|<3n
Prlaccept] = (1-2|E|/n?)2/€ > (1-6/n)?/¢> 2/3

. If |E| > en?/2 then

Prlreject] = 1-Pr[accept] = 1-(1-2|E|/n?) 2/ > 1-(1-g)?/€ > 1-e2> 2/3

2-sided-error O(1/¢)-tester for planarity
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Adjacency matrix model

+ All algorithms are of the following form:

This property may be different from
the original one
(but it's usually the same)
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Adjacency matrix model

+ All algorithms are of the following form:

Theorem: If there is a property testing algorithm for property P
that performs q(n,e) queries to the adjacency matrix

then there is a property testing algorithm for P of the form above

that performs at most O((q(n,z))?) queries o the adjacency matrix
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Adjacency matrix model

Not so easy example:
+ Test if a graph is bipartite

~ One can show that the following algorithm will work:

» Randomly sample O(1/¢) nodes

* Check if the graph induced by these nodes is bipartite
- If it is then accept
- Otherwise reject

\_ - With probability 2/3 will give right answer -/
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Not so easy example:
+ Test if a graph is bipartite

[One can show that the following algorithm will wor'k:\

» Randomly sample O(1/¢) nodes

* Check if the graph induced by these nodes is bipartite
- If it is then accept
- Otherwise reject

\_ - With probability 2/3 will give right answer -/

* Proof with query complexity O(1/¢?) is non-trivial
+ Let's try to give a proof with O(1/¢°V) nodes
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Adjacency matrix model

- We sample O(1/¢%Y) random nodes of G
» Call H the graph induced by these nodes

- To prove
- If G is bipartite then H is bipartite

- obvious

- If G is e-far from bipartite then with prob. > 2/3
graph H is not bipartite

cnallenging
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- We sample O(1/¢%Y) random nodes of G
» Call H the graph induced by these nodes

+ If G is e-far from bipartite then with prob. > 2/3
graph H is not bipartite

- Idea: choose a smaller subset of selected nodes U

- Show that any bipartition determined by U (U = U1+U2)
with constant probability enforce the bipartition on the
remaining part of H + some edges will clash
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Adjacency matrix model —

- We sample O(1/¢%Y) random nodes of G
» Call H the graph induced by these nodes

+ If G is e-far from bipartite then with prob. > 2/3
graph H is not bipartite

U 0O V(H) - of size t=0(clog (1/c))
+ v O Vis heavy: deg(v) > £n/3

- U is good for V if all but at most £n/3 of the heavy
nodes in V have a neighbor in U

+ Claim: With prob > 5/6 randomly chosen set U is good



Adjacency matrix model AP

U U V(H) - of size +=0(c!log (1/5))
+ v Vis heavy: deg(v) > €n/3

- U is good for V if all but at most £n/3 of the heavy
nodes in V have a neighbor in U

+ Claim: With prob > 5/6 randomly chosen set U is good

Proof:
Pr[heavy node v has no neighbor in U] < (1-€/3)' < £/18

E[# heavy nodes with no neighbor in U] < €n/18
The claim follows now from Markov's inequality
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Adjacency matrix model —

+ Uc V(H) - of size t=0(c! log (1/¢))
+ v e Vis heavy: deg(v) > en/3

+ U is good for Vif all but at most en/3 of the heavy
nodes in V have a neighbor in U
* Claim: With prob > 5/6 randomly chosen set U is good

- Edge disturbs a partition (U, ,U,) of U if both endpoints
are in the same N(U.) for some i€{1,2}

* Claim: For any good set U and any bipartition of U, at
least en?/3 edges disturb the partition
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v U V is heavy: deg(v) > € n/3

U is good for V if all but at most €n/3 of the heavy
nodes in V have a neighbor in U

Claim: With prob > 5/6 randomly chosen set U is good
Edge disturbs a partition (U,,U,) of U if both endpoints
are in the same N(U)) for some il {1,2}

Claim: For any good set U and any bipartition of U, at
least £n?/3 edges disturb the partition

Proof:
Each partition of V has at least en? violating edges
We upper bound the number of these edges with an endpoint not in N(U):

* # edges incident to heavy nodes with no neighbor in U < & n?/3
* # edges incident to non-heavy nodes < € n?/3

>There are at least € n2/3 violating edges connecting vertices in N(U)
These edges disturb the partition
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Adjacency matrix model

+ U c V(H) - of size t=0(c! log (1/¢))
+ v e Vis heavy: deg(v) > en/3
U is good for V if all but at most en/3 of the heavy
nodes in V have a neighbor in U
* Claim: With prob > 5/6 randomly chosen set U is good
+ Edge disturbs a partition (U, ,U,) of U if both endpoints
are in the same N(U.) for some i€{1,2}

* Claim: For any good set U and any bipartition of U, at
least en?/3 edges disturb the partition

- His bipartite only if either

1) Uis not good or
2) Uis good & 3 a bipartition of U with no disturbing edge in H



Last step of the proof e

H is bipartite only if either

1) Uis not good or
2) Uis good & 3 a bipartition of U with no disturbing edge in H

Pr[U is not good] < 1/6

Prlevent (2)] < #[bipartitions of U] x Pr[given
bipartitionis "bad"]

S=VH)-U
1S| = Q(|U|/¢), where |U| = O(c! log (1/¢))

Pr[event (2)] < 2IVI(1-¢/3)IS112<1/6

Pr[H is bipartite] <Pr[U is not good]+Pr[event (2)] <1/3
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Adjacency matrix model .

Not so easy example:
+ Test if a graph is bipartite

[One can show that the following algorithm will wor'k:\

» Randomly sample O(1/¢) nodes

* Check if the graph induced by these nodes is bipartite
- If it is then accept
- Otherwise reject

\_ - With probability 2/3 will give right answer -/

* Proof with query complexity O(1/¢?) is non-trivial
- We proved it with O(log(1/¢)/€?) nodes =
O(log? (1/¢)/€*) query complexity
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Adjacency matrix model ——

Open question:
is it possible to test bipartitness

Not so easy example: with query complexity o(&?)?
+ Test if a graph is bipartite

[One can show that the following algorithm will wor'k:\

» Randomly sample O(1/¢) nodes

* Check if the graph induced by these nodes is bipartite
- If it is then accept
- Otherwise reject

\_* With probability 2/3 will give right answer -/

* Proof with query complexity O(1/¢?) is non-trivial
- We proved it with O(log(1/¢)/€?) nodes =
O(log? (1/¢)/€*) query complexity
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Adjacency matrix model

Very easy example:
+ Test if a graph contains a triangle (cycle of length 3)

Return YES (always)

Highly nontrivial example:
» Test if a graph is triangle-free

* Can be done in f(€) = O(1) time
* Proof: deep combinatorics
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Testing triangle-freeness

+ Test if a graph is triangle-free

» Can be done in f(€) = O(1) time using
Szemeredi regularity lemma

M|
A P



Szemeredi regularity lemma e

Regular pairs
* For two vertex sets A and B, let
d(A,B) = edge-density connecting A and B
# edges ting A and B
d(AR) - edge lc:rlxrlnzT ing A an

(A,B) is d-reqular if for every A'CA, B'cB, with |A'|>
S|A| and |B'|> 3|B|, we have |d(A,B)-d(A’',B")|<d

IB[>0|B]

IAT>3A]
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Szemeredi regularity lemma

Szemeredi Regularity Lemma:

For any &, any graph G can be partitioned
into k, 1/8 <k < T(3), subsets Vi,...,V, of equal size,

such that all but at most 3k® of the pairs (V;,V;) are
d-regular



EEEEEEEEEE 17y or D] | =
M
Triangle-freeness & Szemeredi lemma =

Szemeredi Lemma can be used to show that
+ if Gis e-far from triangle-free
* then G has ©(n3) triangles [at least n3/f(e)]

Once this is proven, we have the following property
testing algorithm (with 1-sided error):

i Repeat O(f(g)) times: A

choose 3 nodes i.u.r.
if they form a triangle then reject
accept

\. .
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Szemeredi Regularity Lemma:
For any &, any graph G can be partitioned into k, 1/8 < k < T(8), subsets V,,...,V, of
equal size, such that all but at most &k? of the pairs (V;,V)) are &-regular

We have to prove that if G is e-far from triangle-
free then G has ©(n3) triangles

Find a partition of Vinto V,,..,V, with k<f(¢) and

k>>1/€, such that all but at most &k? of the pairs
are d-reqular for some constant d=5(¢g)<< €

Edge e=(x,y) with x0V; and yLIV,, is useful if
- ViV,
- (V.V,) is d-regular, and
- the density between V,and V,is at least €/15
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Using Szemeredi lemma

Szemeredi Regularity Lemma:
For any &, any graph G can be partitioned into k, 1/8 < k < T(8), subsets V,,...,V, of
equal size, such that all but at most &k? of the pairs (V;,V)) are &-regular

Find a partition of V into V,,..,V, with k<f(¢) and

k>>1/€, such that all but at most of the pairs are
d-regular for some constant 5=0(¢)

Edge e=(x,y) with x0V; and yLIV,, is useful if
- Viz Vv,
- (V..V,) is d-regular, and
- the density between V,and V,is at least £/15

[Lemma: There are less than en? non-useful edges J
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Using Szemeredi lemma

* Let G be &-far from triangle free
Remove all non-useful edges to define graph G
Since G has less than €n? non-useful edges, G

must has at least one triangle =
- There are three useful edges (x,y), (y.z), (z,x) with
x UV, y 0V,, zLV,, such that
. all sets V.V, V.are distinct,
- all sets V,V, V. are pairwise &-regular, and
» the density between each pair V;,V, V,is at least €/15.

- There are ©(n®) triangles between V,,V, V,
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Complexity of some properties B

Is G 2-colorable (bipartite) or is e-far
- We can test just O(1/g) vertices!

G contain no clique of size 17?
- We can test just f(1/g) vertices!

Does G contain no subgraph isomorphic to a given graph with 122
vertices?

- We can test just f(1/g) vertices!
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First order graph properties —

+ Any first-order graph property of type V3 is
testable in O(1)=f(€) time.

» There are first order properties of type 3V that
require superconstant time.
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Complexity of some properties “=

+ We've first seen a long series of exciting results

showing that many graph properties can be
tested in f(1/¢) time [independent of the input

size] and then ...



z

é

S

N\
S
>

General result

» Every hereditary property can be tested in
constant-time!

[Alon & Shapira, 2003-2005]
* Property is hereditary if

- Invariant under vertex removal
- bipartitness
» being perfect
* being chordal
* having no induced subgraph H
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Main Lemma il

Main Lemma:

If G is e-far from satisfying a hereditary property
P, then whp a random subgraph of size W,(€) does
not satisfy P

Proof: by a strengthened version of Szemeredi
regularity lemma

Can be extended o hypergraphs

- via a strengthened version of Szemeredi reqularity
lemma for hypergraphs
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Is hereditary needed? s

+ There is an NP property, which is closed under
edge removal, that cannot be tested with o(n?)
edge queries, even with 2-sided error.



Adjacency matrix model

There are very fast property testers
They're very simple
- Typical algorithm:

*Select a random set of vertices U
‘Test the property on the subgraph induced by U

» The analysis is (often) very hard

+ We understand this model very well

- mostly because of very close relation to
combinatorics

- Typical running time; T(xic? Szemeredi regularity
lemma) hvee or mere

2 % J{ouer‘f ofhg%@(%)

L)
>
T =



Adjacency matrix model

There are very fast property testers
They're very simple
- Typical algorithm:

*Select a random set of vertices U
‘Test the property on the subgraph induced by U

» The analysis is (often) very hard

+ We understand this model very well

- mostly because of very close relation to
combinatorics

- Typical running time: (v%ZSzemeredl regularity

lemma) 02 f G times

T@uoev (C) 2
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Adjacency matrix model

» There are very fast property testers
+ They're very simple
- Typical algorithm:

*Select a random set of vertices U
‘Test the property on the subgraph induced by U

» The analysis is (often) very hard

+ We understand this model very well

- mostly because of very close relation to
combinatorics

- Typical running time: (via Szemeredi reqularity
lemmigwer( Tower(Tower(1/<)))

For £=0.5 we have Tower(Tower(Tower(1/¢c))) =Tower(65536)

=)
>
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Adjacency matrix model

+ There are very fast property testers
+ They're very simple
- Typical algorithm:

*Select a random set of vertices U
‘Test the property on the subgraph induced by U

» The analysis is (often) very hard

+ We understand this model very well

- mostly because of very close relation to
combinatorics

- Still: sometimes the runtime is better
O(1/¢), O(1/€?), O(1/2¢)
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* When can we get 1/€°0 query complexity?

+ Alon: For any non-bipartite H, testing the
property of being H-free with 1-sided error

requires (1/¢)f(°g 7€) gueries

For any f(€) there is a monotone graph property,
whlch canno’r be tested with ( ( ) ueries an
1-sided error

- Monotone properties are hereditary = have O(1) 1-sided
error testers
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Part II
Adjacency lists model



WARWICK

Testing graph properties in AP
adjacency lists model

+ We consider bounded-degree model
- graph has maximum degree d [constant]

+ Relatively little is known

- Connection to combinatorics!
+ Connection to random walks!

CS notation:

f(n) = O(g(n)) iff 3 k>0 £(n) = O(g(n) log (g(n)))
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» Accept every graph of max-degree d that satisfies
property P

+ Reject every graph of max-degree d that is e-far
from property P

- e-far from P: one has to modify at least edn/2 edges
to obtain a graph with property P

+ Arbitrary answer if the graph doesn't satisfy P nor
is e-far from P

» Can err with probability < 1/3

- Sometimes errs only for "rejects”: 1-sided-error
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Testing connectivity

What does it mean that a graph 6 with maximum
degree at most d is e-far from connected?

=> G has at least €dn/8 connected components

* not enough..we need many small connected
components
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Bounded-degree adjacency list model ==

What does it mean that a graph G with maximum
degree at most d is e-far from connected?

G has at least ¢dn/8 connected components

G has > £dn/16 connected components of size <16/=d
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What does it mean that a graph G with maximum
degree at most d is e-far from connected?

G has at least ¢dn/8 connected components

G has > £dn/16 connected components of size <16/=d

fPr'oof: \

Let G have t connected components of size < 16/«d
and s connected components of size >16/:d

Then, t+s > ¢dn/8

Since s (16/cd) < n we have
s <edn/16

wence, + > edn/16 /
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Bounded-degree adjacency list model =

What does it mean that a graph G with maximum
degree at most d is e-far from connected?

G has > £dn/16 connected components of size <16/=d

/Repea‘r O(e'd) times: \

choose a random vertex v

run BFS from v until either 16/cd+1 vertices
have been visited or the entire
connected component has been visited

if v is contained in a connected component
of size <16/¢d then reject

Qccept /
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Bounded-degree adjacency list model =

Testing connectivity:
Can be done in O(c2d) time

/Repea’r O(e'd) times: \
choose a random vertex v
run BFS from v until either 16/ed+1 vertices have been
visited or the entire connected component has been visited
if v is contained in a connected component of size <16/¢d
then reject

\occept /

Can be improved to O(¢! polylog(ed)) time
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+ Testing bipartitness (2-colorability)
- Can be done in O(n!/2 / €°®) time (Goldreich & Ron)

Algorithm:

Select O(1/¢) starting vertices

*For each vertex run poly(log n/e) n'2 random walks of length poly(log n/g)
*If any of the starting vertices lies on an odd-length cycle then reject
*Otherwise accept
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Bounded-degree adjacency list model ==

+ Testing bipartitness (2-colorability)
- Can be done in O(n!/2 / €°®) time (Goldreich & Ron)
- Cannot be done faster (Goldreich & Ron)
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Bounded-degree adjacency list model
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+ Testing bipartitness (2-colorability)
- Can be done in O(n!/2 / €°®) time (Goldreich & Ron)
- Cannot be done faster (Goldreich & Ron)

Consider two classes of graphs (wlog N - even):
G,N: Hamiltonian cycle + a perfect matching on N nodes

G,N: Hamiltonian cycle + a perfect matching on N nodes,

but every matching connects two nodes
at odd distance on the Hamiltonian cycle

G,N is bipartite, and whp GN is not; whp 6N is 0.01-far from bipartite

Then: an algorithm that performs o(n'/2) queries is unable
to distinguish between a graph chosen at random from G\

and a graph chosen at random from G,N:

TiA liadtlh ~madmams FHlams Alcamavridlhin A tnllbAlh, /A Amcacamtitadtr sy A~ A~~~
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+ Testing 3-colorability

.. requires checking (almost) all vertices and edges!

For general bounded degree graphs,
testing most of natural properties require
superconstant-time (typically, Q(n'?))

or even linear-time
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Which properties can be tested in constant time in
the adjacency list model?



Constant time testing il

- Even if we cannot test (in constant-time) many
properties for general graphs, we can test them
for large classes of graphs
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*+ 6=(V,E) is a A-expander if
- N(S) > A |S]| forall S c Vwith |S| > |V]|/2

+ 6raph 6 is C-strongly non-expanding if
- every induced subgraph of G with at least C
vertices is not a (1/log?n)-expanders

Key property:
non-expanding families of graphs have good separators
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Testing in non-expanding families of graphs

* In the bounded degree graph model any
hereditary property is testable in constant-time
if the input graph belongs to a C-strongly non-
expanding family of graphs (for some constant C)
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Testing in bounded degree planar graphs

+ Testing any hereditary property in planar graphs
of constant degree can be done in constant time
- bipartitness
- being perfect
- being chordal
- having no induced subgraph H
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+ We'll sketch a proof that testing hereditary
properties in planar graphs of bounded degree
can be done in constant time

[assuming € is a constant]

‘For a given hereditary property P
We have to design an algorithm that for any
planar graph G of maximum degree d

-will accept G if G satisfies P

~[with prob > 2/3] will reject G if G is e-far from P

*Algorithm will accept unless it finds a “"proof"
that G doesn't satisfy P
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Consider testing a simple
hereditary property - say, being bipartite

We only have to consider graphs

that are e-far from satisfying the property

How to REJECT them?




tor of size O(n'/2

)
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Remove edges incident to separator
And repeat recursively
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Until only small connected components lef+t

& ./.

We've removed only a few edges («< €n)
If the input graph is e-far then
The obtained graph is €/2-far!

AP
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that the graph doesm P AP

But we don't know
connected components

If we knew connected components
we could check if the obtained graph satisfies

the property by sampling ~0O(d/g) random vertices
and checking their connected components
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that the graph doesm P AP

Property tester!

5

Pick random sample of ~0O(d/s) vertices
For each vertex explore its neighborhood (of constant size)
If the input graph is ¢-far:
the induced subgraph shouldn't satisfy the property!
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What's the complexity/runtime? ~O((d/c)°/=)

Pick random sample of ~0O(d/s) vertices
For each vertex explore its neighborhood (of constant size)

If the input graph is ¢-far:
the induced subgraph shouldn't satisfy the property!

J1Ns wqncsq 2npdLaby 2pon|qu 4 204124A LNS DLODSLLA;
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Property testers il

* One can make this idea to work to design
property testers for planar graphs (of constant
max-degree) for all hereditary properties

+ Key property: every hereditary property can be
characterized by a set of minimal forbidden

i For example:
nduced SUbngPhs no-bipartite = has a cycle of odd length

ho-chordal = has a cycle of length > 3
* Hence: we only have to check if these subgraphs
don't exist in small components




Property testers il

» One doesn't need planar graphs:
- It's enough to have some separator properties

+ Works for all C-strongly non-expanding families
of graphs
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*+ 6=(V,E) is a A-expander if
- N(S) > A |S]| forall S c Vwith |S| > |V]|/2

+ 6raph 6 is C-strongly non-expanding if
- every induced subgraph of G with at least C
vertices is not a (1/log?n)-expanders
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Non-expanding graphs vs. separators =

Let G=(V,E) be a C-strongly non-expanding graph of
maximum degree d. Let k be an arbitrary
parameter, k>0.

If n= |V] > max{2C,2¥¥} then one can partition V
info V, and V, such that

- |V, IV,] > n/4 and
- e(V,V,) < kdn / log*n.
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For every C-strongly non-expanding graph 6=(V,E)
of maximum degree d there exists a positive
constant ¢ such that one can remove from G at
most edn/2 edges such that

* their removal partitions G into connected
components C,,C,,... of size at most 2¢* each,

- each connected component C. is an induced
subgraph of G, and

* no edge connects in G two non-trivial connected
components C; and C..
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choose a random sample S of vertices
|S| = O(1) - depending on d, €, graph
family, property to be tested

for each vertexvin S
let N [v] be the r-th neighborhood of v

r = O(1) - depending on d, €, graph family,
property to be tested

If the graph induced by U,_N.[v] satisfies
the property then ACCEPT
else REJECT
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+ Complexity is O(1) for constant d and ¢
+ Dependency ond and € is low

» But dependency on hereditary property/graph
family might be large (but it's an absolute
constant)

» All depend on the properties at hand

- Testing planar graphs for "basic” hereditary
properties (k-coloring, chordal, perfect, no induced
subgraph H) in time 2@a°"

* [Think: very fast when comparing to "constant-
time" bounds for adjacency matrix model]
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+ Very few properties known (for general graphs)
- connectivity
- k-connectivity
- H-freeness

- Very e

This was the state of the art until 5-6 months ago.
Now: Every minor-closed property is testable with O(1) queries
Benjamini, Schramm, Shapira, STOC2008
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For example, there are graphs on w(n) }
nodes with w(1) girth

O(1) queries

Testing planar graphs can be

+ Why is it surprising?
* There are graphs G such that

- any connected subgraph of G of constant size is planar
- Gise-far from planar

So: how come could we test planarity by
checking only subgraphs of constant size?

For each subgraph of constant size,
check the number of its occurrences in G
No all frequencies are possible in planar graphs!




THE UNIVERSITY ‘@F

WARWICK

Checking planarity in constant time
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Let F,, be the family of all connected graphs of maximum degree d
on at most k vertices

Let F,[G] be the characteristic vector of length |F, | such that if
H is the ith element of F,, then the ith element of the vector

equals the number of occurrences of H as an induced subgraph
of G

Theorem: If G is e-far from planar then its vector F,[G]
significantly differ from F,[6G'] any planar graph G

Testing planarity ~ checking the characteristic vector F,[G]

We don't need to know the exact values of the vector:
approximation is enough
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Checking planarity in constant time

Let F,, be the family of all connected graphs of maximum degree d
on at most k vertices

Let F,[G] be the characteristic vector of length |F,| such that if
H is the ith element of F, then the ith element of the vector

equals the number of occurrences of H as an induced subgraph
of G

Testing planarity ~ checking the characteristic vector F,[G]

We don't need to know the exact values of the vector:
approximation is enough

\

Randomly sample O(1) vertices
For each sampled vertex v
run BFS from v of O(1) depth
let H_v be the obtained graph
Accept or reject G using only graphs H, to estimate F,[G]

y
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Extension: all minor-closed properties

» Every minor-closed property can be tested ina
similar way
* Minor-closed properties include:
- Planar,
- Outer-planar,
- Series-parallel,
- Bounded-genus,
- bounded tree-width,

Minor = obtained by edge/vertex removal + edge contractions
P is minor-closed if every minor of a graph inP is also in P

>
T =
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These techniques don't work for ar~l:itmry-.'=
degree graphs

Testing planarity in arbitrary degree graphs
requires Q(n"?) time

Open problem: can it be done in O(n'/2) time?



Future of Property Testing —
We need general results

Relation to

- approximation algorithms
+ distributed algorithms

» streaming algorithms
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» Modern applications need very fast algorithms

* Property testing:
- Framework to study graph/network properties
- Can be used to designh some very fast testers

+ Key questions:

- Which problems/properties can be tested
efficiently?

+ Beautiful and nontrivial mathematics behind
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Problems for students
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Using Szemeredi lemma

Szemeredi Regularity Lemma:
For any &, any graph G can be partitioned into k, 1/8 < k < T(8), subsets V,,...,V, of
equal size, such that all but at most &k? of the pairs (V;,V)) are &-regular

Find a partition of V into V,,..,V, with k<f(¢) and
k>>1/€, such that all but at most of the pairs are
d-regular for some constant 6=0(g)<< €

Edge e=(x.y) with x[OV, and yLIV,, is useful if
- Viz Vv,
- (V..V,) is d-regular, and
- the density between V, and V;is at least €/15

[Lemma: There are less than en? non-useful edges J
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Using Szemeredi lemma :

* Let G be &-far from triangle free
+ Remove all non-useful edges to define graph G'
* Since G has less than en? non-useful edges, G'

must has at least one triangle =

- There are three useful edges (x,y), (y.z), (z,x) with
x UV, y 0V,, zLV,, such that
. all sets V.V, V.are distinct,
- all sets V,,V,,V.are pairwise d-regular, and

7 Vjrvs

There are O(n®) triangles between V, V. V.
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Non-expanding graphs vs. separators =~

G=(V,E) is a L-expander if
- N(S) > % |S] forall S c Vwith |S] > |V]/2

+ Graph G is C-strongly non-expanding if
- every induced subgraph of G with at least C vertices is not a
(1/log®n)-expanders

Let G6=(V,E) be a C-strongly non-expanding graph of maximum
degree d. Let k be an arbitrary parameter, k>0.

If n=|V| > max{2C,22/%*} then one can partition V

info V; and V, such that
- |V1|, |V2| > n/4 and

- e(V,,V,) <kdn / log!®n.
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For every C-strongly non-expanding graph 6=(V,E)
of maximum degree d there exists a positive
constant ¢ such that one can remove from G at
most edn/2 edges such that

* their removal partitions G into connected
components C,,C,,... of size at most 2¢* each,

- each connected component C. is an induced
subgraph of G, and

* no edge connects in G two non-trivial connected
components C; and C..



WARWICK

Testing connectivity =

* In the bounded-degree model with adjacency
lists, design a property testing algorithm for
connectivity with the running time

O(e!polylog(et/d))
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+ Let 6=(V,E) be an edge-weighted graph and
suppose that all edges are in {1,2}.
+ Let c(i) = #connected components of the

subgraph of G induced by edges of weight at
most |

- Show that MST(G) = n-2+c(1)
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+ Let 6=(V,E) be an edge-weighted graph and
suppose that all edges are in {1,2,..,W}.
+ Let c(i) = #connected components of the

subgraph of G induced by edges of weight at
most |

+ Show that MST(G) = n-W+c(1)+c(2)+...+c(W-1)

» How could you use this approach to estimate the
cost of MST(G)?
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Approximating #connected components

choose vertices u,, ..., u, at random

for each vertex i do
- choose X according to Pr[X>k] = 1/k
- Run BFS starting at u, until either
1. Entire connected component containing u, has been explored, or

2. X vertices have been explored
- If BFS stopped incase 1 thenb, =1
- elseb, =0
Outputest=n/s 5. b.

«Compute E[b.] and Var[b]
*Compute E[est] and Var[est]
*Compute Pr[|est-E[est]| < An]
*Use this to estimate the cost of MST



