

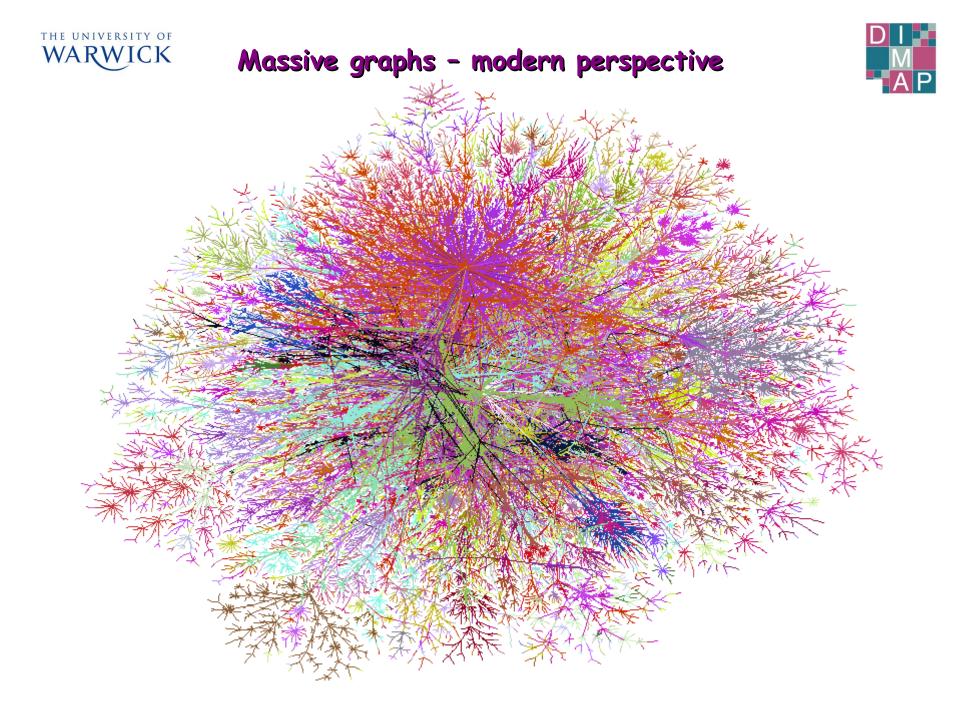
Combinatorial and Probabilistic techniques in Property Testing

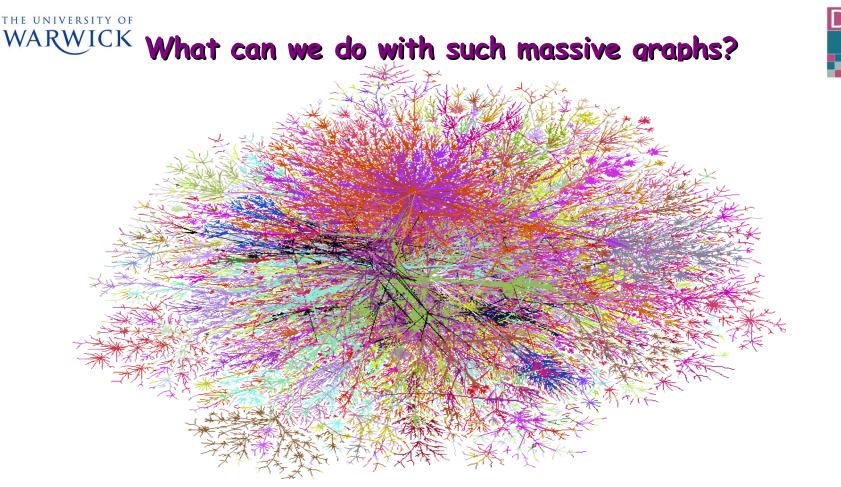
Artur Czumaj

DIMAP (Centre for Discrete Maths and it Applications) & Department of Computer Science University of Warwick

THE UNIVERSITY OF WARWICK

Massive graphs





- Can we quickly test if this graph has some properties?
 - What is quickly if graph has billions of nodes?
 - Quickly ~ better than in $\Theta(n)$ time!

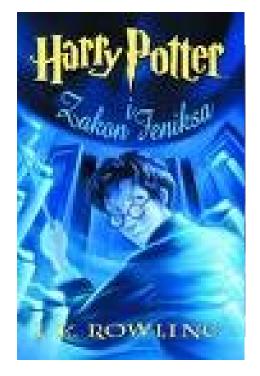
WARWICK "in the castle" vs. "out of the castle" Property Testing

- Distinguish inputs that have specific property from those that are far from having the property
- Benefits:

THE UNIVERSITY OF

- May be the natural question to ask
- May be just as good when data constantly changing
- Gives fast sanity check to rule out very "bad" inputs (i.e., restaurant bills) or to decide when expensive processing is worth it

- Is this book written in English?
- We (usually) don't have to read entire book to make a good guess



Another example:

- Given: list $x_1 x_2 \dots x_n$
- Question: is the list sorted?
- Clearly requires $\Omega(n)$ time

Another example:

- Given: list $x_1 x_2 \dots x_n$
- Question: is the list almost sorted?
 - i.e., can change at most ϵ fraction of list to make it sorted
- Can test in $O(1/\varepsilon \cdot \log n)$ time
 - [Ergun, Kannan, Kumar, Rubinfeld, Viswanathan]
 - best possible

- Classical decision problem:
 - Given a property P and input instance I
 - Does I has property P?

Often it's computationally hard (NP-

complete/undecidable)

- What we want to study [relaxation]:
 - Is I close to satisfy property P?

Can work fast even for NP-hard or undecidable

properties

Property Testing definition

- Given input x
- If x has the property , tester passes
- · If x is $\epsilon\text{-far}$ from any string that has the property , tester fails
- error probability < 1/3

Notion of ϵ -far depends on the problem; Typically: one needs to change ϵ fraction of the input to obtain object satisfying the property

> Typically we think about ε as on a small constant, say, $\varepsilon = 0.1$

Property Testing definition

- Given input x
- If x has the property , tester passes
- If x is $\epsilon\text{-far}$ from any string that has the property , tester fails
- error probability < 1/3

- This is 2-sided-error tester
- 1-sided error: errs only for x being ϵ -far

So, what is property testing

- Early motivation:
 - Program checking
 - Program verification
 - Learning theory
- Big boost (in theory)
 - Probabilistically Checkable Proofs
 - "Correctness of any proof in NP can be verified by testing only O(1) positions in the proof and using only O(log n) random bits"

Properties of functions

- Linearity test [Blum Luby Rubinfeld] [Bellare Coppersmith Hastad Kiwi Sudan] (various improvements by many others)
 \(\forall x, f(x)+f(y)-f(x+y)\)
 - $\forall x, y f(x) + f(y) = f(x+y)$
- Low total degree polynomial tests [Rubinfeld Sudan] [Arora Safra] [Arora Lund Motwani Sudan Szegedy] [Arora Sudan] ...
- Functions definable by functional equations trigonometric, elliptic functions
- Groups, Fields
- Finite precision [Gemmell Lipton Rubinfeld Sudan Wigderson]
- Low complexity functions [Parnas Ron Samorodnitsky]
- Useful in
 - Program checking
 - PCP constructions

Properties of distributions:

- some properties:
 - are two given distributions similar or very different?
 - approximate the entropy of a distribution
 - are two random variables independent?

[Batu Fortnow Rubinfeld Smith White] [Batu Dasgupta Kumar Rubinfeld][Batu Fischer Fortnow Kumar Rubinfeld White]

 access to samples of distribution, not explicit probabilities

WARWICK Study of combinatorial properties [Goldreich Goldwasser Ron]

- Graph properties
- Hypergraph properties
- Monotonicity
- Set properties
- Geometric properties
- String properties
- Membership in low complexity languages (regular languages, constant width branching programs, context-free languages ...)

Properties of graphs [Goldwasser, Goldreich, Ron]

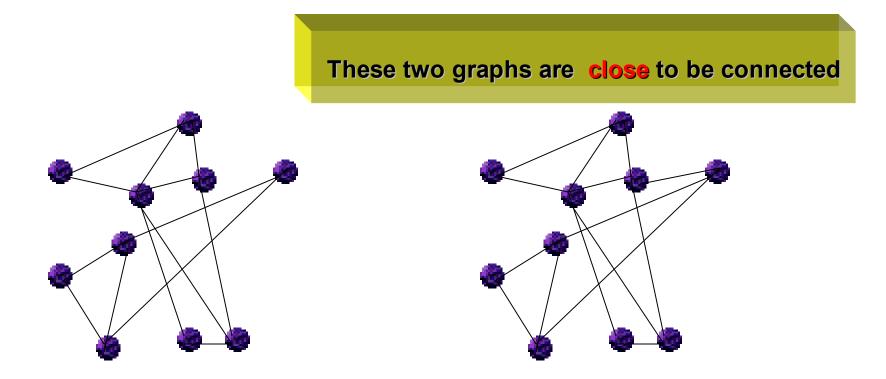
- Graph properties:
 - Colorability
 - Not containing a forbidden subgraph
 - Connectivity
 - Acyclicity
 - Rapid mixing
 - Max-Cut

. . .

Some of these properties are NP-hard

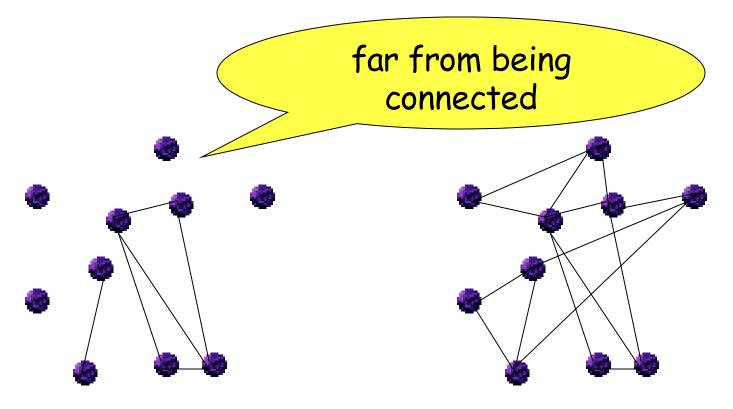
Graph properties

- Measure of being far/close from a property
- Is graph connected or is *far* from being connected?



Graph properties

- Measure of being far/close from a property
- Is graph connected or is *far* from being connected?



1st definition

Graph G is ϵ -far from satisfying property P If one needs to modify more than ϵ -fraction of entries in adjacency matrix to obtain a graph satisfying P

0	1	0	0	1
1	0	1	1	1
0	1	0	0	1
0	1	0	0	0
1	1	1	0	0

1st definition

Graph G is ϵ -far from satisfying property P If one needs to modify more than ϵ -fraction of entries in adjacency matrix to obtain a graph satisfying P

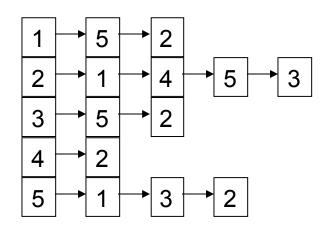
 $\epsilon {\cdot} n^2$ edges have to be added/deleted

Suitable for dense graphs

Usually "trivial" for sparse graphs

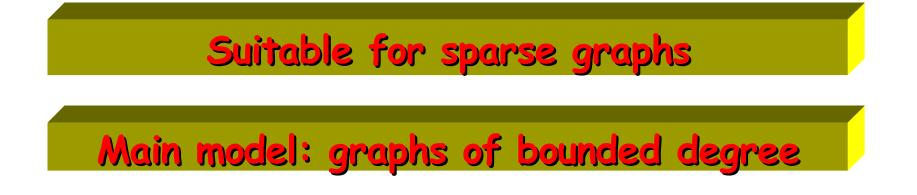
2nd definition

Graph G is ϵ -far from satisfying property P If one needs to modify more than ϵ -fraction of entries in adjacency lists to obtain a graph satisfying P



2nd definition

Graph G is ϵ -far from satisfying property P If one needs to modify more than ϵ -fraction of entries in adjacency lists to obtain a graph satisfying P



What is the complexity (running-time)?

- For simplicity:
 - Complexity = number of accesses to the input
 - In adjacency matrix model:
 - number of entries tested
 - Oracle: is (x,y) in E?
 - In adjacency list model:
 - number of edges tested
 - Oracle: give me the ith neighbor of vertex v

- We will discuss a few representative examples of property testing algorithms for both models of graphs
- Some proofs will be given
- Some won't (eg because they're too complex)
- You will have to do some proofs

Part I Adjacency matrix model

- Accept every graph that satisfies property P
- **Reject** every graph that is ε -far from property P
 - ε-far from P: one has to modify at least εn² entries of the adjacency matrix to obtain a graph with property P
- Arbitrary answer if the graph doesn't satisfy P nor is ϵ -far from P
- Can err with probability < 1/3
 - Sometimes errs only for "rejects": 1-sided-error

- There are very fast property testers
- They're very simple
 - Typical algorithm:

•Select a random set of vertices U •Test the property on the subgraph induced by U

- The analysis is (often) very hard
- We understand this model very well
 - mostly because of very close relation to combinatorics

First example:

- Test if a graph G=(V,E) is planar
 - We've already said: testing is "trivial" for sparse graphs ...

First example:

- Test if a graph G=(V,E) is planar
 - We've already said: testing is "trivial" for sparse graphs ...
- If G is dense then it's certainly not planar
- If G is sparse then it's not ϵ -far from planar
 - Every graph with less than $\epsilon n^2/2$ edges is ϵ -close to planar: remove all its edges
- How to distinguish between sparse graphs and dense graphs?

Easy example:

Test if a graph is planar

Check if G is sparse [if it has less than $e^{2/2}$ edges]

- If it's not then reject G
 - all planar graphs are sparse
- If it sparse then accept G
 - every sparse graph can be "made planar": remove all edges
- How to check if G has much less than $\epsilon n^2/2$ edges?
 - ${\boldsymbol \cdot}$ Randomly sample 2/ ${\boldsymbol \epsilon}$ entries in the adjacency matrix
 - If all of them are 0 then accept
 - Otherwise reject
 - With probability 2/3 will give right answer

How to check if G has much less than $\epsilon n^2/2$ edges

Randomly sample $2/\epsilon$ entries in the adjacency matrix

- If all of them are 0 then accept
- Otherwise reject

Analysis:

If G is planar then |E|<3n

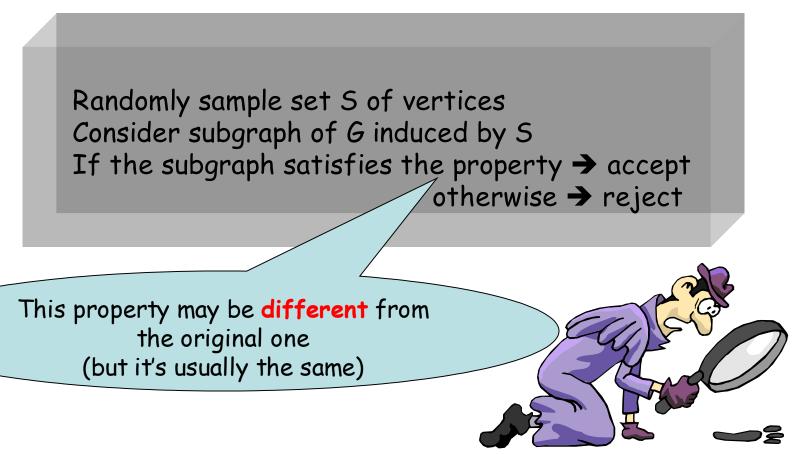
 $Pr[accept] = (1-2|E|/n^2)^{2/\epsilon} > (1-6/n)^{2/\epsilon} > 2/3$

• If $|E| > \epsilon n^2/2$ then

 $Pr[reject] = 1-Pr[accept] = 1-(1-2|E|/n^2)^{2/\epsilon} > 1-(1-\epsilon)^{2/\epsilon} > 1-e^{-2} > 2/3$

2-sided-error $O(1/\epsilon)$ -tester for planarity

• All algorithms are of the following form:



• All algorithms are of the following form:

Randomly sample set S of vertices Consider subgraph of G induced by S If the subgraph satisfies the property → accept otherwise → reject

Theorem: If there is a property testing algorithm for property P that performs $q(n,\varepsilon)$ queries to the adjacency matrix then there is a property testing algorithm for P of the form above that performs at most $O((q(n,\varepsilon))^2)$ queries to the adjacency matrix

Not so easy example:

Test if a graph is bipartite

- One can show that the following algorithm will work:

- Randomly sample $O(1/\epsilon)$ nodes
- Check if the graph induced by these nodes is bipartite
 - If it is then accept
 - Otherwise reject
- With probability 2/3 will give right answer

Not so easy example:

• Test if a graph is bipartite

- One can show that the following algorithm will work:

- Randomly sample $O(1/\epsilon)$ nodes
- Check if the graph induced by these nodes is bipartite
 - If it is then accept
 - Otherwise reject
- With probability 2/3 will give right answer
- Proof with query complexity $O(1/\epsilon^2)$ is non-trivial
- Let's try to give a proof with O(1/ $\epsilon^{\rm O(1)}$) nodes

- We sample $O(1/\epsilon^{O(1)})$ random nodes of G
- Call H the graph induced by these nodes
- To prove
 - If G is bipartite then H is bipartite

· obvious

- If G is ϵ -far from bipartite then with prob. > 2/3 graph H is not bipartite
 - challenging

- We sample $O(1/\epsilon^{O(1)})$ random nodes of G
- Call H the graph induced by these nodes
- If G is ϵ -far from bipartite then with prob. > 2/3 graph H is not bipartite
- Idea: choose a smaller subset of selected nodes U
- Show that any bipartition determined by U (U = U1+U2) with constant probability enforce the bipartition on the remaining part of H + some edges will clash

- We sample $O(1/\epsilon^{O(1)})$ random nodes of G
- Call H the graph induced by these nodes
- If G is ϵ -far from bipartite then with prob. > 2/3 graph H is not bipartite
- $U \subseteq V(H)$ of size t=O($\varepsilon^{-1} \log (1/\varepsilon)$)
- $v \in V$ is heavy: deg(v) $\geq \epsilon$ n/3
- U is good for V if all but at most ϵ n/3 of the heavy nodes in V have a neighbor in U
- Claim: With prob \geq 5/6 randomly chosen set U is good

- $U \subseteq V(H)$ of size t=O($\varepsilon^{-1} \log (1/\varepsilon)$)
- $v \in V$ is heavy: deg(v) $\geq \epsilon n/3$
- U is good for V if all but at most ϵ n/3 of the heavy nodes in V have a neighbor in U
- Claim: With prob \geq 5/6 randomly chosen set U is good

Proof:

Pr[heavy node v has no neighbor in U] \leq (1- $\epsilon/3$)[†] < $\epsilon/18$ E[# heavy nodes with no neighbor in U] < ϵ n/18 The claim follows now from Markov's inequality

- $U \subseteq V(H)$ of size t=O($\varepsilon^{-1} \log (1/\varepsilon)$)
- $v \in V$ is heavy: deg(v) $\geq \epsilon n/3$
- U is good for V if all but at most εn/3 of the heavy nodes in V have a neighbor in U
- Claim: With prob $\geq 5/6$ randomly chosen set U is good
- Edge disturbs a partition (U₁,U₂) of U if both endpoints are in the same N(U_i) for some i∈{1,2}
- Claim: For any good set U and any bipartition of U, at least εn²/3 edges disturb the partition

- $v \in V$ is heavy: deg(v) $\geq \epsilon n/3$
- U is good for V if all but at most ϵ n/3 of the heavy nodes in V have a neighbor in U
- Claim: With prob \geq 5/6 randomly chosen set U is good
- Edge disturbs a partition (U_1, U_2) of U if both endpoints are in the same $N(U_i)$ for some $i \in \{1, 2\}$
- Claim: For any good set U and any bipartition of U, at least $\epsilon n^2/3$ edges disturb the partition

Proof:

Each partition of V has at least ϵn^2 violating edges We upper bound the number of these edges with an endpoint not in N(U):

• # edges incident to heavy nodes with no neighbor in $U \le \epsilon n^2/3$

• # edges incident to non-heavy nodes $\leq \epsilon n^2/3$

→There are at least ϵ n²/3 violating edges connecting vertices in N(U) These edges disturb the partition

- $U \subseteq V(H)$ of size t=O($\epsilon^{-1} \log (1/\epsilon)$)
- $v \in V$ is heavy: deg(v) $\geq \epsilon n/3$
- U is good for V if all but at most εn/3 of the heavy nodes in V have a neighbor in U
- Claim: With prob \geq 5/6 randomly chosen set U is good
- Edge disturbs a partition (U₁,U₂) of U if both endpoints are in the same N(U_i) for some i∈{1,2}
- Claim: For any good set U and any bipartition of U, at least εn²/3 edges disturb the partition
- H is bipartite only if either
 - 1) U is not good or
 - 2) U is good & ∃ a bipartition of U with no disturbing edge in H

Last step of the proof

H is bipartite only if either

- 1) U is not good or
- 2) U is good & 3 a bipartition of U with no disturbing edge in H

$Pr[U \text{ is not good}] \leq 1/6$

- Pr[event (2)] ≤ #[bipartitions of U] × Pr[given bipartition is "bad"]
- S = V(H) U
- $|S| = \Omega(|U|/\varepsilon)$, where $|U| = O(\varepsilon^{-1} \log (1/\varepsilon))$

$$Pr[event (2)] \leq 2^{|U|} (1 - \epsilon / 3)^{|S|/2} < 1/6$$

 $Pr[H \text{ is bipartite}] \leq Pr[U \text{ is not good}]+Pr[event (2)] \leq 1/3$

Not so easy example:

- Test if a graph is bipartite
 - One can show that the following algorithm will work:
 - Randomly sample $O(1/\epsilon)$ nodes
 - Check if the graph induced by these nodes is bipartite
 - If it is then accept
 - Otherwise reject
 - With probability 2/3 will give right answer
- Proof with query complexity $O(1/\epsilon^2)$ is non-trivial
- We proved it with $O(\log(1/\epsilon)/\epsilon^2)$ nodes \rightarrow

 $O(\log^2(1/\epsilon)/\epsilon^4)$ query complexity

Not so easy example:

Open question: is it possible to test bipartitness with query complexity o(ε⁻²)?

- Test if a graph is bipartite
 - One can show that the following algorithm will work:
 - Randomly sample $O(1/\epsilon)$ nodes
 - Check if the graph induced by these nodes is bipartite
 - If it is then accept
 - Otherwise reject
 - With probability 2/3 will give right answer
- Proof with query complexity $O(1/\epsilon^2)$ is non-trivial
- We proved it with $O(\log(1/\epsilon)/\epsilon^2)$ nodes \rightarrow

 $O(\log^2(1/\epsilon)/\epsilon^4)$ query complexity

Very easy example:

• Test if a graph contains a triangle (cycle of length 3)

Return YES (always)

Highly nontrivial example:

- Test if a graph is triangle-free
 - Can be done in $f(\mathcal{E}) = O(1)$ time
 - Proof: deep combinatorics

Testing triangle-freeness

- Test if a graph is triangle-free
- Can be done in $f(\epsilon) = O(1)$ time using Szemeredi regularity lemma

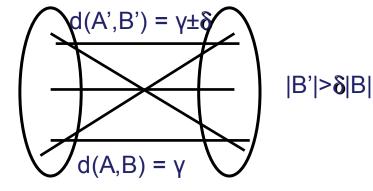
Szemeredi regularity lemma

Regular pairs

 $|A'| > \delta |A|$

- For two vertex sets A and B, let

 d(A,B) = edge-density connecting A and B
 d(A,B) = # edges connecting A and B
 |A||B|
- (A,B) is δ -regular if for every A' \subseteq A, B' \subseteq B, with |A'|> δ |A| and |B'|> δ |B|, we have |d(A,B)-d(A',B')|< δ



Szemeredi regularity lemma

Szemeredi Regularity Lemma:

For any δ , any graph G can be partitioned into k, $1/\delta \le k \le T(\delta)$, subsets $V_1, ..., V_k$ of equal size, such that all but at most δk^2 of the pairs (V_i, V_j) are δ -regular

Szemeredi Lemma can be used to show that

• if G is ϵ -far from triangle-free

THE UNIVERSITY OF

• then G has $\Theta(n^3)$ triangles [at least $n^3/f(\varepsilon)$]

Once this is proven, we have the following property testing algorithm (with 1-sided error):

Repeat O(f(ε)) times: choose 3 nodes i.u.r. if they form a triangle then reject accept

Using Szemeredi lemma

Szemeredi Regularity Lemma:

For any δ , any graph G can be partitioned into k, $1/\delta \le k \le T(\delta)$, subsets $V_1, ..., V_k$ of equal size, such that all but at most δk^2 of the pairs (V_i, V_j) are δ -regular

- We have to prove that if G is ϵ -far from triangle-free then G has $\Theta(n^3)$ triangles
- Find a partition of V into $V_1, ..., V_k$ with k<f(ϵ) and
 - k>>1/ ϵ , such that all but at most δk^2 of the pairs are δ -regular for some constant δ = $\delta(\epsilon)<<\epsilon$
- Edge e=(x,y) with $x \in V_i$ and $y \in V_j$, is **useful** if
 - $V_i \neq V_j$,
 - (V_i,V_j) is δ -regular, and
 - the density between V_i and V_j is at least $\epsilon/15$

Using Szemeredi lemma

Szemeredi Regularity Lemma:

For any δ , any graph G can be partitioned into k, $1/\delta \le k \le T(\delta)$, subsets $V_1, ..., V_k$ of equal size, such that all but at most δk^2 of the pairs (V_i, V_j) are δ -regular

Find a partition of V into V₁,...,V_k with k<f(ϵ) and k>>1/ ϵ , such that all but at most of the pairs are δ -regular for some constant δ = $\delta(\epsilon)$

Edge e=(x,y) with $x \in V_i$ and $y \in V_j$, is **useful** if

- $V_i \neq V_j$,
- (V_i, V_j) is δ -regular, and
- the density between V_i and V_j is at least $\epsilon/15$

Lemma: There are less than εn^2 non-useful edges

Using Szemeredi lemma

- Let G be E-far from triangle free
- Remove all non-useful edges to define graph G'
- Since G has less than εn² non-useful edges, G' must has at least one triangle →
 - There are three useful edges (x,y), (y,z), (z,x) with $x \in V_i$, $y \in V_j$, $z \in V_s$, such that
 - all sets V_i, V_j, V_s are distinct,
 - all sets V_i, V_j, V_s are pairwise δ -regular, and
 - the density between each pair V_i, V_j, V_s is at least $\epsilon/15$.
- \rightarrow There are $\Theta(n^3)$ triangles between V_i, V_j, V_s

WARWICK Complexity of some properties

- Is G 2-colorable (bipartite) or is ϵ -far
 - We can test just O(1/E) vertices!

Testing in time independent of the size of G

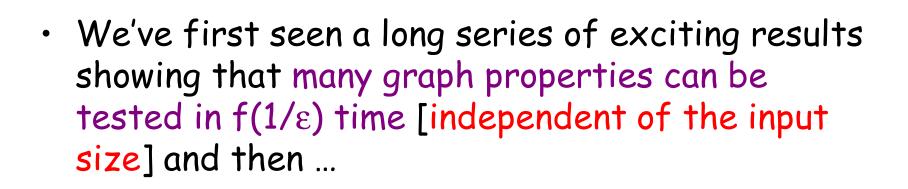
• G contain no clique of size 17?

THE UNIVERSITY OF

- We can test just **f(1/e)** vertices!
- Does G contain no subgraph isomorphic to a given graph with 122 vertices?
 - We can test just **f(1/e)** vertices!

First order graph properties

- Any first-order graph property of type $\forall \exists$ is testable in $O(1)=f(\epsilon)$ time.
- There are first order properties of type ∃∀ that require superconstant time.



General result

 Every hereditary property can be tested in constant-time!

[Alon & Shapira, 2003-2005]

- Property is hereditary if
 - Invariant under vertex removal
 - bipartitness
 - being perfect
 - being chordal
 - having no induced subgraph H
 - ...

Main Lemma

Main Lemma:

- If G is ϵ -far from satisfying a hereditary property P, then whp a random subgraph of size $W_{\rm P}(\epsilon)$ does not satisfy P
- Proof: by a strengthened version of Szemeredi regularity lemma
- Can be extended to hypergraphs
 - via a strengthened version of Szemeredi regularity lemma for hypergraphs

Is hereditary needed?

 There is an NP property, which is closed under edge removal, that cannot be tested with o(n²) edge queries, even with 2-sided error.

- There are very fast property testers
- They're very simple
 - Typical algorithm:

•Select a random set of vertices U •Test the property on the subgraph induced by U

- The analysis is (often) very hard
- We understand this model very well
 - mostly because of very close relation to combinatorics

- There are very fast property testers
- They're very simple
 - Typical algorithm:

•Select a random set of vertices U •Test the property on the subgraph induced by U

- The analysis is (often) very hard
- We understand this model very well
 - mostly because of very close relation to combinatorics
 - Typical running time: (via Szemeredi regularity lemma) Jowey (c) = 2

- There are very fast property testers
- They're very simple
 - Typical algorithm:

•Select a random set of vertices U •Test the property on the subgraph induced by U

- The analysis is (often) very hard
- We understand this model very well
 - mostly because of very close relation to combinatorics
 - Typical running time: (via Szemeredi regularity lemm**kgwer(Tower(Tower(1/ε)))**

For ϵ =0.5 we have Tower(Tower(Tower(1/ ϵ))) = Tower(65536)

- There are very fast property testers
- They're very simple
 - Typical algorithm:

•Select a random set of vertices U •Test the property on the subgraph induced by U

- The analysis is (often) very hard
- We understand this model very well
 - mostly because of very close relation to combinatorics
- Still: sometimes the runtime is better $O(1/\epsilon), O(1/\epsilon^2), O(1/2^{\epsilon})$

- When can we get $1/\epsilon^{O(1)}$ query complexity?
- Alon: For any **non-bipartite** H, testing the property of being H-free with 1-sided error requires $(1/\epsilon)^{\Omega(\log 1/\epsilon)}$ queries
- For any $f(\epsilon)$ there is a monotone graph property, which cannot be tested with $o(f(\epsilon))$ queries and 1-sided error
 - Monotone properties are hereditary
 have O(1) 1-sided error testers

Part II Adjacency lists model

Testing graph properties in adjacency lists model

- We consider bounded-degree model
 - graph has maximum degree d [constant]
- Relatively little is known
- Connection to combinatorics!
- Connection to random walks!

CS notation:

 $f(n) = O(g(n)) \text{ if } \exists k > 0 f(n) = O(g(n) \log^k(g(n)))$

- Accept every graph of max-degree d that satisfies property P
- Reject every graph of max-degree d that is ε-far from property P
 - ϵ -far from P: one has to modify at least ϵ dn/2 edges to obtain a graph with property P
- Arbitrary answer if the graph doesn't satisfy P nor is $\epsilon\text{-far}$ from P
- Can err with probability < 1/3
 - Sometimes errs only for "rejects": 1-sided-error

Testing connectivity

What does it mean that a graph G with maximum degree at most d is ϵ -far from connected?

 \rightarrow G has at least $\frac{\epsilon dn}{8}$ connected components

 not enough...we need many small connected components

What does it mean that a graph G with maximum degree at most d is ϵ -far from connected?

G has at least $\epsilon dn/8$ connected components

G has $\geq \epsilon dn/16$ connected components of size $\leq 16/\epsilon d$

What does it mean that a graph G with maximum degree at most d is ϵ -far from connected?

G has at least $\epsilon dn/8$ connected components

G has $\geq \epsilon dn/16$ connected components of size $\leq 16/\epsilon d$

```
Proof:
Let G have t connected components of size \leq 16/\epsilon d
and s connected components of size > 16/\epsilon d
Then, t+s \geq \epsilon dn/8
Since s (16/\epsilon d) \leq n we have
s \leq \epsilon dn/16
Hence, t \geq \epsilon dn/16
```


What does it mean that a graph G with maximum degree at most d is ϵ -far from connected?

G has $\geq \epsilon dn/16$ connected components of size $\leq 16/\epsilon d$

Repeat O(e⁻¹d) times: choose a random vertex v run BFS from v until either 16/ed+1 vertices have been visited or the entire connected component has been visited if v is contained in a connected component of size ≤16/ed then reject

accept

Testing connectivity:

Can be done in $O(\epsilon^{-2} d)$ time

Repeat O(e⁻¹d) times: choose a random vertex v run BFS from v until either 16/ed+1 vertices have been visited or the entire connected component has been visited if v is contained in a connected component of size ≤16/ed then reject accept

Can be improved to $O(\epsilon^{-1} \text{ polylog}(\epsilon^{-1}d))$ time

Bounded-degree adjacency list model

- Testing bipartitness (2-colorability)
 - Can be done in $\overline{O}(n^{1/2} / \epsilon^{O(1)})$ time (Goldreich & Ron)

Algorithm:
Select O(1/ε) starting vertices
For each vertex run poly(log n/ε) n^{1/2} random walks of length poly(log n/ε)
If any of the starting vertices lies on an odd-length cycle then reject
Otherwise accept

Bounded-degree adjacency list model

- Testing bipartitness (2-colorability)
 - Can be done in $\overline{O(n^{1/2} / \epsilon^{O(1)})}$ time (Goldreich & Ron)
 - Cannot be done faster (Goldreich & Ron)

Bounded-degree adjacency list model

- Testing bipartitness (2-colorability)
 - Can be done in $\overline{O(n^{1/2} / \epsilon^{O(1)})}$ time (Goldreich & Ron)
 - Cannot be done faster (Goldreich & Ron)

Consider two classes of graphs (wlog N - even):
•G₁^N: Hamiltonian cycle + a perfect matching on N nodes
•G₂^N: Hamiltonian cycle + a perfect matching on N nodes, but every matching connects two nodes at odd distance on the Hamiltonian cycle

 G_2^N is bipartite, and whp G_1^N is not; whp G_1^N is 0.01-far from bipartite

Then: an algorithm that performs $o(n^{1/2})$ queries is unable to distinguish between a graph chosen at random from G_1^N and a graph chosen at random from G_2^N : To both caces, the algorithm is unlikely to answer a system.

Testing 3-colorability

... requires checking (almost) all vertices and edges!

For general bounded degree graphs, testing most of natural properties require superconstant-time (typically, $\Omega(n^{1/2})$) or even linear-time

Which properties can be tested in constant time in the adjacency list model?

Constant time testing

 Even if we cannot test (in constant-time) many properties for general graphs, we can test them for large classes of graphs

Non-expanding families of graphs

- G=(V,E) is a λ -expander if - N(S) $\geq \lambda$ |S| for all S \subset V with |S| \geq |V|/2
- Graph G is C-strongly non-expanding if
 - every induced subgraph of G with at least C vertices is not a (1/log²n)-expanders

Key property: non-expanding families of graphs have good separators

Testing in non-expanding families of graphs

 In the bounded degree graph model any hereditary property is testable in constant-time if the input graph belongs to a C-strongly nonexpanding family of graphs (for some constant C)

Example: Testing in bounded degree planar graphs

- Testing any hereditary property in planar graphs of constant degree can be done in constant time
 - bipartitness

THE UNIVERSITY OF

- being perfect
- being chordal
- having no induced subgraph H

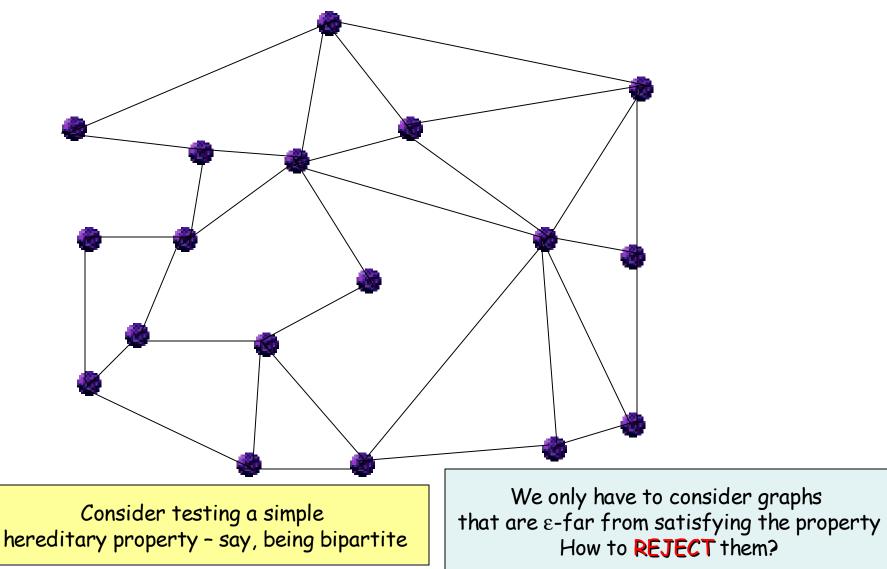
 We'll sketch a proof that testing hereditary properties in planar graphs of bounded degree can be done in constant time

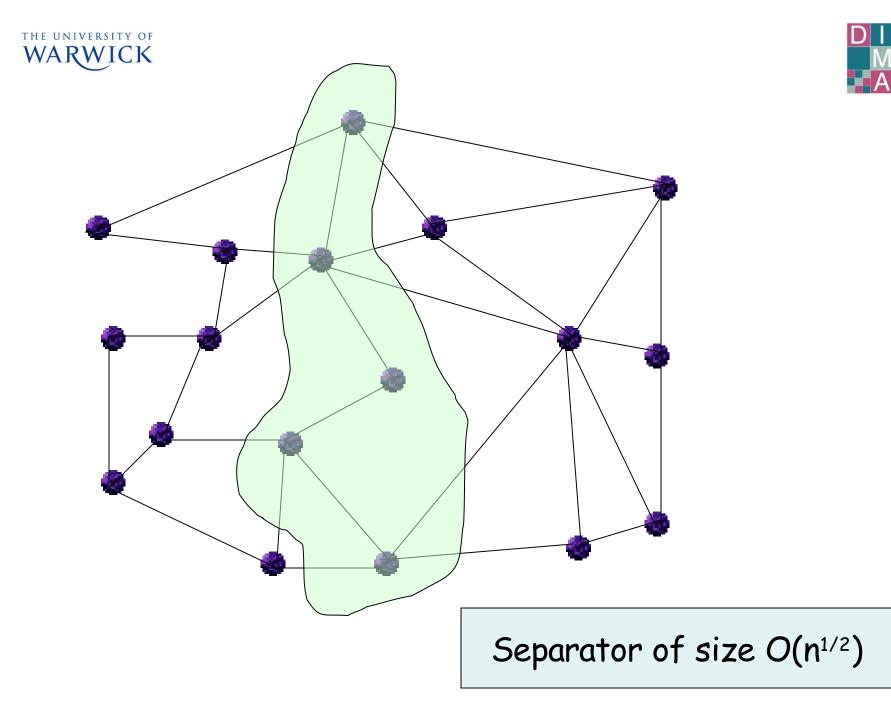
[assuming ϵ is a constant]

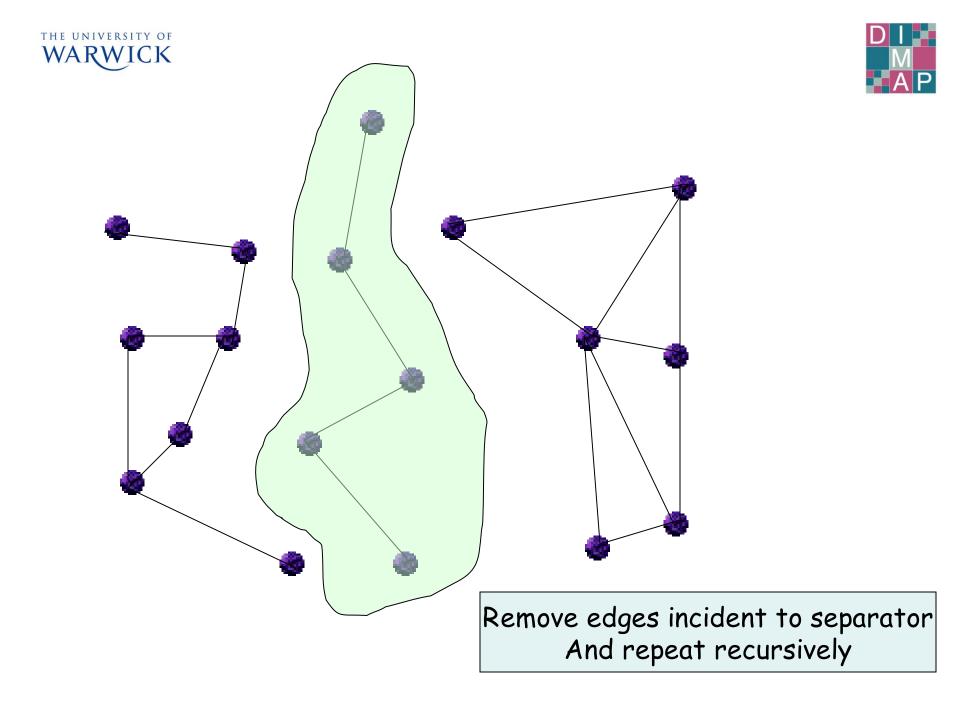
 For a given hereditary property P We have to design an algorithm that for any planar graph G of maximum degree d
 -will accept G if G satisfies P

-[with prob \geq 2/3] will reject G if G is ϵ -far from P

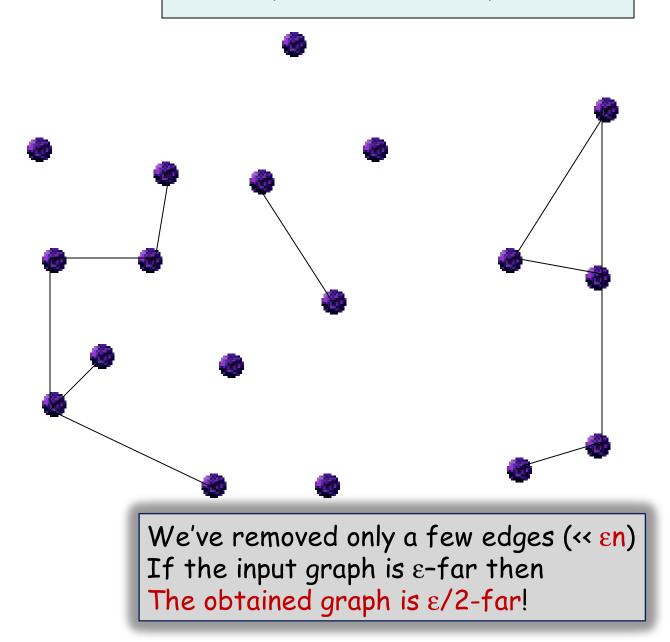
 Algorithm will accept unless it finds a "proof" that G doesn't satisfy P

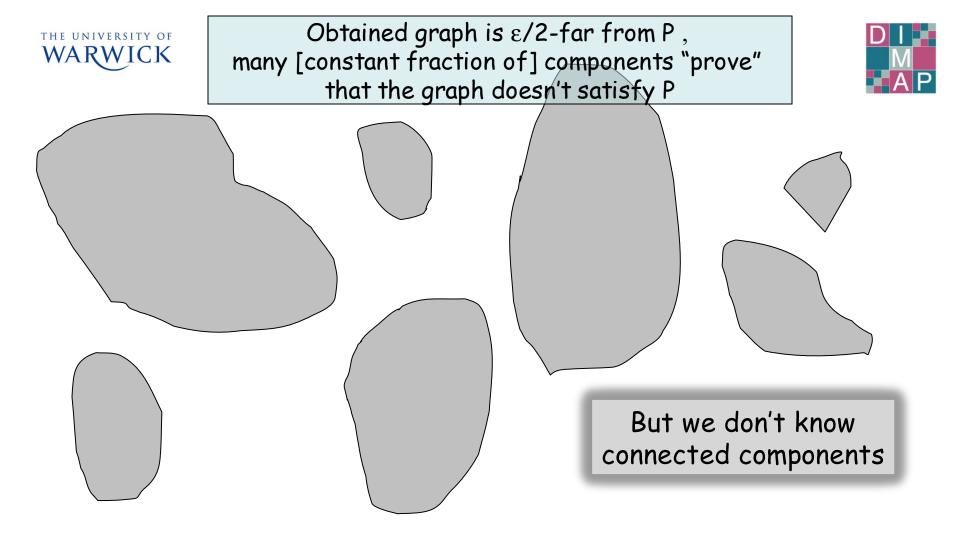




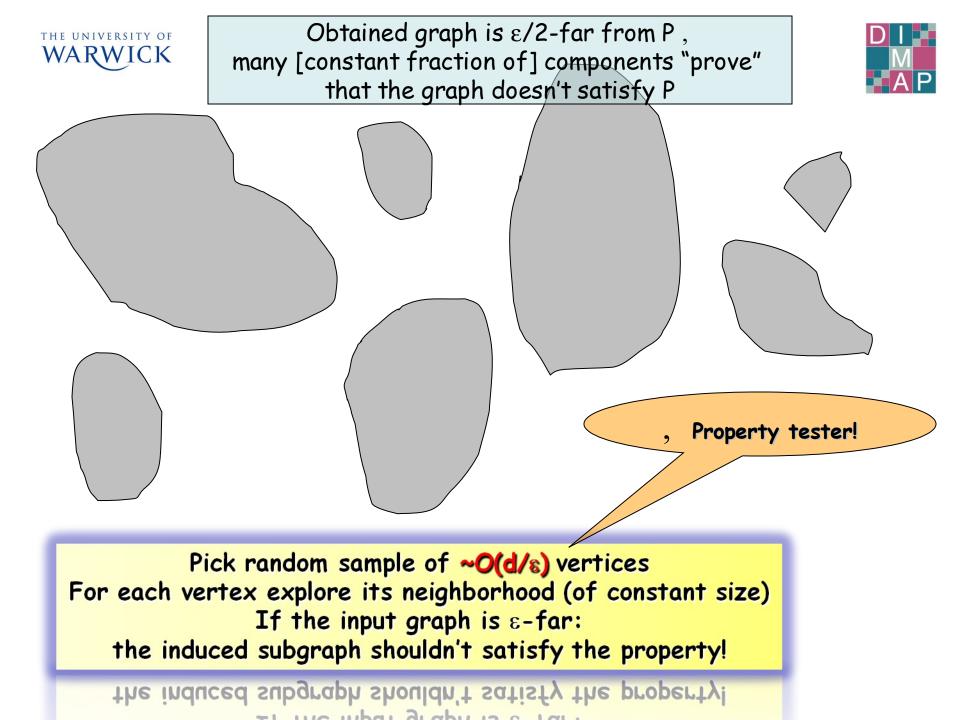


Until only small connected components left





If we knew connected components we could check if the obtained graph satisfies the property by sampling ~O(d/ɛ) random vertices and checking their connected components



What's the complexity/runtime? ~O((d/&)^{O(d/&)})

What's the complexity/runtime? "U((a/s)")

Pick random sample of **~O(d/ε)** vertices For each vertex explore its neighborhood (of constant size) If the input graph is ε-far: the induced subgraph shouldn't satisfy the property!

the induced subgraph shouldn't satisfy the property!

Property testers

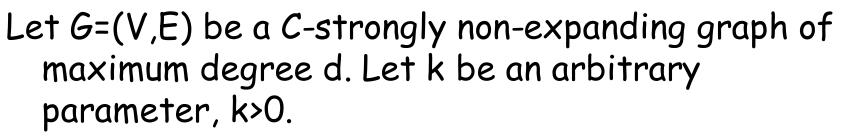
- One can make this idea to work to design property testers for planar graphs (of constant max-degree) for all hereditary properties
- Key property: every hereditary property can be characterized by a set of minimal forbidden induced subgraphs
 For example: no-bipartite = has a cycle of odd length no-chordal = has a cycle of length > 3
- Hence: we only have to check if these subgraphs don't exist in small components

Property testers

- One doesn't need planar graphs:
 - It's enough to have some separator properties
- Works for all C-strongly non-expanding families of graphs

Non-expanding graphs

- G=(V,E) is a λ -expander if - N(S) $\geq \lambda$ |S| for all S \subset V with |S| \geq |V|/2
- Graph G is C-strongly non-expanding if
 - every induced subgraph of G with at least C vertices is not a (1/log²n)-expanders



- If n = $|V| \ge \max\{2C, 2^{2/k^2}\}$ then one can partition V into V₁ and V₂ such that
 - $|V_1|$, $|V_2| \ge n/4$ and
 - $e(V_1, V_2) \le kdn / log^{1.5}n.$

- For every C-strongly non-expanding graph G=(V,E)of maximum degree d there exists a positive constant c such that one can remove from G at most ϵ dn/2 edges such that
- their removal partitions G into connected components C_1, C_2, \dots of size at most $2^{c/\epsilon^2}$ each,
- each connected component C_i is an induced subgraph of G, and
- no edge connects in G two non-trivial connected components C_i and C_j .

choose a random sample S of vertices |S| = O(1) - depending on d, ε , graph family, property to be tested for each vertex v in S let N_r[v] be the r-th neighborhood of v r = O(1) - depending on d, ε , graph family, property to be tested If the graph induced by $\bigcup_{v \in S} N_r[v]$ satisfies the property then ACCEPT else REJECT

Complexity of the tester

- Complexity is O(1) for constant d and $\,\epsilon\,$
- Dependency on d and ϵ is low
- But dependency on hereditary property/graph family might be large (but it's an absolute constant)
- All depend on the properties at hand
 - Testing planar graphs for "basic" hereditary properties (k-coloring, chordal, perfect, no induced subgraph H) in time $2^{(d/\epsilon)^{O(1)}}$
- [Think: very fast when comparing to "constanttime" bounds for adjacency matrix model]

WARWICK O(1) testing in adjacency list model?

- Very few properties known (for general graphs)
 - connectivity

THE UNIVERSITY OF

- k-connectivity
- H-freeness

This was the state of the art until 5-6 months ago. Now: Every minor-closed property is testable with O(1) queries Benjamini, Schramm, Shapira, STOC'2008

For example, there are graphs on $\omega(n)$

Constant time testing !

Testing planar graphs can be done with O(1) girth O(1) queries

- Why is it surprising?
- There are graphs G such that
 - any connected subgraph of G of constant size is planar
 - G is ϵ -far from planar

So: how come could we test planarity by checking only subgraphs of constant size?

For each subgraph of constant size, check the number of its occurrences in G No all frequencies are possible in planar graphs!

Checking planarity in constant time

Let $F_{\mbox{\tiny dk}}$ be the family of all connected graphs of maximum degree d on at most k vertices

Let $F_{dk}[G]$ be the characteristic vector of length $|F_{dk}|$ such that if H is the ith element of F_{dk} then the ith element of the vector equals the number of occurrences of H as an induced subgraph of G

Theorem: If G is ε -far from planar then its vector $F_{dk}[G]$ significantly differ from $F_{dk}[G']$ any planar graph G'

Testing planarity ~ checking the characteristic vector $F_{dk}[G]$

We don't need to know the exact values of the vector: approximation is enough

Checking planarity in constant time

Let $F_{\mbox{\tiny dk}}$ be the family of all connected graphs of maximum degree d on at most k vertices

Let $F_{dk}[G]$ be the characteristic vector of length $|F_{dk}|$ such that if H is the ith element of F_{dk} then the ith element of the vector equals the number of occurrences of H as an induced subgraph of G

Testing planarity ~ checking the characteristic vector $F_{dk}[G]$

We don't need to know the exact values of the vector: approximation is enough

Randomly sample O(1) vertices For each sampled vertex v run BFS from v of O(1) depth let H_v be the obtained graph Accept or reject G using only graphs H_v to estimate F_{dk}[G]

warwick Extension: all minor-closed properties

- Every minor-closed property can be tested in a similar way
- Minor-closed properties include:
 - Planar,

THE UNIVERSITY OF

- Outer-planar,
- Series-parallel,
- Bounded-genus,
- bounded tree-width,
- ..
- Minor = obtained by edge/vertex removal + edge contractions
- P is minor-closed if every minor of a graph in P is also in P

These techniques don't work for arbitrarydegree graphs

Testing planarity in arbitrary degree graphs requires $\Omega(n^{1/2})$ time

Open problem: can it be done in $O(n^{1/2})$ time?

Future of Property Testing

We need general results

Relation to

- approximation algorithms
- distributed algorithms
- streaming algorithms

Conclusions

- Modern applications need very fast algorithms
- Property testing:
 - Framework to study graph/network properties
 - Can be used to design some very fast testers
- Key questions:
 - Which problems/properties can be tested efficiently?
- Beautiful and nontrivial mathematics behind

Surveys:

- E. Fischer. The art of uninformed decisions: A primer to property testing. *Bulletin* of the EATCS, 75: 97–126, October 2001.
- O. Goldreich. Property testing in massive graphs. In J. Abello, P. M. Pardalos, and M. G. C. Resende, editors, *Handbook of Massive Data Sets*, pp. 123–147. Kluwer Academic Publishers, 2002.
- R. Kumar and R. Rubinfeld. Sublinear time algorithms. *SIGACT News*, 34: 57–67, 2003.
- D. Ron. Property testing. In P. M. Pardalos, S. Rajasekaran, J. Reif, and J. D. P. Rolim, editors, *Handobook of Randomized Algorithms*, volume II, pp. 597–649. Kluwer Academic Publishers, 2001.
- A. Czumaj and C. Sohler. Sublinear-time algorithms. *Bulletin of the EATCS*, 89: 23–47, June, 2006.

Key papers:

- N. Alon and A. Shapira. A characterization of the (natural) graph properties testable with one-sided error. *SIAM Journal on Computing*, 37(6): 1703-1727, 2008.
- I. Benjamini, O. Schramm, and A. Shapira. Every minor-closed property of sparse graphs is testable. *Proceedings of the 40th Annual ACM Symposium on Theory of Computing (STOC)*, pp. 393–402, 2008.
- A. Czumaj and C. Sohler. On testable properties in bounded degree graphs. *Proceedings of the 18th* Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 494–501, 2007.
- O. Goldreich, S. Goldwasser, and D. Ron. Property testing and its connection to learning and approximation. *Journal of the ACM*, 45(4): 653–750, 1998.
- O. Goldreich and D. Ron. Property testing in bounded degree graphs. *Algorithmica*, 32(2): 302–343, 2002.
- N. Alon, E. Fischer, I. Newman, and A. Shapira. A combinatorial characterization of the testable graph properties: it's all about regularity. *Proceedings of the 38th Annual ACM Symposium on Theory of Computing (STOC)*, pp. 251–260, 2006.
- A. Czumaj and C. Sohler. Abstract combinatorial programs and efficient property testers. *SIAM Journal on Computing*, 34(3): 580–615, 2005.
- O. Goldreich and D. Ron. A sublinear bipartiteness tester for bounded degree graphs. *Combinatorica*, 19(3):335–373, 1999.

Problems for students

Using Szemeredi lemma

Szemeredi Regularity Lemma:

For any δ , any graph G can be partitioned into k, $1/\delta \le k \le T(\delta)$, subsets $V_1, ..., V_k$ of equal size, such that all but at most δk^2 of the pairs (V_i, V_j) are δ -regular

Find a partition of V into V₁,...,V_k with k<f(ε) and k>>1/ ε , such that all but at most of the pairs are δ -regular for some constant δ = $\delta(\varepsilon)<<\varepsilon$ Edge e=(x,y) with x \in V_i and y \in V_j, is **useful** if

- $V_i \neq V_j$,
- (V_i, V_j) is δ -regular, and
- the density between V and V is at least $\epsilon/15$

Lemma: There are less than εn^2 non-useful edges

Using Szemeredi lemma

- Let G be E-far from triangle free
- Remove all non-useful edges to define graph G'
- Since G has less than εn² non-useful edges, G' must has at least one triangle →
 - There are three useful edges (x,y), (y,z), (z,x) with $x \in V_i, \, y \in V_j, \, z \in V_s,$ such that
 - all sets V_i, V_j, V_s are distinct,
 - all sets V_i, V_j, V_s are pairwise δ -regular, and

• the density between each pair V_i, V_j, V_s is at least ε /15. There are $\Theta(n^3)$ triangles between V_i, V_j, V_s

Non-expanding graphs vs. separators

• G=(V,E) is a λ -expander if

THE UNIVERSITY OF

- $N(S) \ge \lambda$ |S| for all $S \subset V$ with $|S| \ge |V|/2$
- Graph G is C-strongly non-expanding if
 - every induced subgraph of G with at least C vertices is not a (1/log²n)-expanders
- Let G=(V,E) be a C-strongly non-expanding graph of maximum degree d. Let k be an arbitrary parameter, k>0. If n = $|V| \ge \max\{2C, 2^{2/k^2}\}$ then one can partition V into V₁ and V₂ such that $-|V_1|$, $|V_2| \ge n/4$ and
 - $e(V_1, V_2) \le kdn / log^{1.5}n.$

- For every C-strongly non-expanding graph G=(V,E)of maximum degree d there exists a positive constant c such that one can remove from G at most ϵ dn/2 edges such that
- their removal partitions G into connected components C_1, C_2, \dots of size at most $2^{c/\epsilon^2}$ each,
- each connected component C_i is an induced subgraph of G, and
- no edge connects in G two non-trivial connected components C_i and C_j .

• In the bounded-degree model with adjacency lists, design a property testing algorithm for connectivity with the running time $O(\epsilon^{-1} \operatorname{polylog}(\epsilon^{-1}/d))$

- Let G=(V,E) be an edge-weighted graph and suppose that all edges are in {1,2}.
- Let c(i) = #connected components of the subgraph of G induced by edges of weight at most i
- Show that MST(G) = n-2+c(1)

- Let G=(V,E) be an edge-weighted graph and suppose that all edges are in {1,2,...,W}.
- Let c(i) = #connected components of the subgraph of G induced by edges of weight at most i
- Show that MST(G) = n-W+c(1)+c(2)+...+c(W-1)
- How could you use this approach to estimate the cost of MST(G)?

choose vertices u₁, ..., u_s at random

for each vertex i do

THE UNIVERSITY OF

- choose X according to $Pr[X \ge k] = 1/k$
- Run BFS starting at u_i until either
 - 1. Entire connected component containing u_i has been explored, or
 - 2. X vertices have been explored
- If BFS stopped in case 1 then $b_i = 1$
- else b_i = 0

Output est = n/s Σ_i b: •Compute E[b_i] and Var[b_i] •Compute E[est] and Var[est] •Compute Pr[|est-E[est]| $\leq \lambda$ n] •Use this to estimate the cost of MST