
Artur CzumajArtur Czumaj
DIMAPDIMAP (Centre for Discrete Maths and it Applications)

& Department of Computer ScienceComputer Science
University of WarwickUniversity of Warwick

Combinatorial and Probabilistic Combinatorial and Probabilistic
techniques in techniques in

Property TestingProperty Testing

Massive graphsMassive graphs

Massive graphs – modern perspectiveMassive graphs – modern perspective

What can we do with such massive graphs?What can we do with such massive graphs?

– Can we quickly test if this graph has some
properties?

• What is quickly if graph has billions of nodes?
• Quickly ~ better than in Θ(n) time!

““in the castle” vs. “out of the castle”in the castle” vs. “out of the castle”
Property TestingProperty Testing

• Distinguish inputs that have specific property
from those that are far from having the property

• Benefits:
– May be the natural question to ask
– May be just as good when data constantly changing
– Gives fast sanity check to rule out very “bad” inputs (i.e., restaurant

bills) or to decide when expensive processing is worth it

An example:An example:

• Is this book written in
English?

• We (usually) don’t have to
read entire book to make a
good guess

Test: pick a few random pages
if they’re in English  book is in English

Another example:Another example:

• Given: list x1 x2 ... xn

• Question: is the list sorted?

• Clearly requires Ω(n) time

Another example:Another example:

• Given: list x1 x2 ... xn

• Question: is the list almost sorted?
– i.e., can change at most ε fraction of list to make it

sorted

• Can test in O(1/ε ¢ log n) time
– [Ergun, Kannan, Kumar, Rubinfeld, Viswanathan]
– best possible

Property testingProperty testing

• Classical decision problem:
– Given a property P and input instance I
– Does I has property P?

• What we want to study [relaxation]:
– Is I close to satisfy property P?

Often it’s computationally hard (NP-
complete/undecidable)

Can work fast even for NP-hard or undecidable
properties

Property Testing definitionProperty Testing definition

• Given input x

• If x has the property  tester passestester passes

• If x is ε-far from any string that has the property 
tester failstester fails

• error probability < 1/3

Notion ofNotion of εε-far-far depends on the problem;depends on the problem;
Typically: one needs to changeTypically: one needs to change εε fraction of the input fraction of the input
to obtain object satisfying the propertyto obtain object satisfying the property

Typically we think aboutTypically we think about εε
as on a small constant, say,as on a small constant, say, εε = 0.1 = 0.1

Property Testing definitionProperty Testing definition

• Given input x

• If x has the property  tester passestester passes

• If x is ε-far from any string that has the property 
tester failstester fails

• error probability < 1/3

• This is This is 2-sided-error2-sided-error tester tester
• 1-sided error: 1-sided error: errs only for x being errs only for x being εε-far-far

So, what is property testingSo, what is property testing

• Early motivation:
– Program checking
– Program verification
– Learning theory

• Big boost (in theory)
– Probabilistically Checkable Proofs

• “Correctness of any proof in NP can be verified by
testing only O(1) positions in the proof and using only
O(log n) random bits”

Properties of functionsProperties of functions

• Linearity test [Blum Luby Rubinfeld] [Bellare Coppersmith Hastad
Kiwi Sudan] (various improvements by many others)
∀x,y f(x)+f(y)=f(x+y)

• Low total degree polynomial tests [Rubinfeld Sudan] [Arora
Safra] [Arora Lund Motwani Sudan Szegedy] [Arora Sudan] ...

• Functions definable by functional equations –
trigonometric, elliptic functions

• Groups, Fields
• Finite precision [Gemmell Lipton Rubinfeld Sudan Wigderson] …….
• Low complexity functions [Parnas Ron Samorodnitsky] …..

• Useful in
– Program checking
– PCP constructions

Properties of distributions:Properties of distributions:

• some properties:
– are two given distributions similar or very different?
– approximate the entropy of a distribution
– are two random variables independent?
 [Batu Fortnow Rubinfeld Smith White] [Batu

Dasgupta Kumar Rubinfeld][Batu Fischer Fortnow
Kumar Rubinfeld White]

• access to samples of distribution, not explicit
probabilities

Study of combinatorial propertiesStudy of combinatorial properties
[Goldreich Goldwasser Ron][Goldreich Goldwasser Ron]

• Graph properties
• Hypergraph properties
• Monotonicity
• Set properties
• Geometric properties
• String properties
• Membership in low complexity languages

(regular languages, constant width branching
programs, context-free languages …)

Properties of graphsProperties of graphs
[Goldwasser, Goldreich, Ron][Goldwasser, Goldreich, Ron]

• Graph properties:
– Colorability
– Not containing a forbidden subgraph
– Connectivity
– Acyclicity
– Rapid mixing
– Max-Cut

 …
Some of these properties

are NP-hard

Graph propertiesGraph properties

• Measure of being far/close from a property
• Is graph connected or is farfar from being connected?

These two graphs are These two graphs are closeclose to be connected to be connected

Graph propertiesGraph properties

• Measure of being far/close from a property
• Is graph connected or is farfar from being connected?

far from being
connected

11stst definition definition

Graph G is ε-far from satisfying property P
If one needs to modify more than ε-fraction of
entries in adjacency matrixadjacency matrix to obtain a graph
satisfying P

0 1 0 0 1
1 0 1 1 1
0 1 0 0 1
0 1 0 0 0
1 1 1 0 0

11stst definition definition

Graph G is ε-far from satisfying property P
If one needs to modify more than ε-fraction of
entries in adjacency matrixadjacency matrix to obtain a graph
satisfying P

ε¢n2 edges have to be added/deleted

Suitable for dense graphsSuitable for dense graphs

Usually “trivial” for sparse graphsUsually “trivial” for sparse graphs

22ndnd definition definition

Graph G is ε-far from satisfying property P
If one needs to modify more than ε-fraction of
entries in adjacency listsadjacency lists to obtain a graph
satisfying P

1

5

2
3

4

5 2

1

1 4 5 3
5

2

2

2

3

22ndnd definition definition

Graph G is ε-far from satisfying property P
If one needs to modify more than ε-fraction of
entries in adjacency listsadjacency lists to obtain a graph
satisfying P

Suitable for sparse graphsSuitable for sparse graphs

Main model: graphs of bounded degreeMain model: graphs of bounded degree

What is the complexity (running-time)?What is the complexity (running-time)?

• For simplicity:
– Complexity = number of accesses to the input

• In adjacency matrix model:
– number of entries tested
– Oracle: is (x,y) in E?

• In adjacency list model:
– number of edges tested
– Oracle: give me the ith neighbor of vertex v

PlanPlan

• We will discuss a few representative examples of
property testing algorithms for both models of
graphs

• Some proofs will be given
• Some won’t (eg because they’re too complex)
• You will have to do some proofs

Part IPart I
Adjacency matrix modelAdjacency matrix model

Adjacency matrix modelAdjacency matrix model

• AcceptAccept every graph that satisfies property P

• RejectReject every graph that is ε–far from property P
– εε-far from P-far from P: one has to modify at least εn2 entries of

the adjacency matrix to obtain a graph with property P

• Arbitrary answer Arbitrary answer if the graph doesn’t satisfy P nor
is ε–far from P

• Can err with probability < 1/3
– Sometimes errs only for “rejects”: 1-sided-error1-sided-error

Adjacency matrix modelAdjacency matrix model

• There are very fast property testers
• They’re very simple

– Typical algorithm:

• The analysis is (often) very hard
• We understand this model very well

– mostly because of very close relation to
combinatorics

•Select a random set of vertices USelect a random set of vertices U
•Test the property on the subgraph induced by UTest the property on the subgraph induced by U

Adjacency matrix modelAdjacency matrix model

First example:
• Test if a graph G=(V,E) is planar

– We’ve already said: testing is “trivial” for sparse graphs …

Adjacency matrix modelAdjacency matrix model

First example:
• Test if a graph G=(V,E) is planar

– We’ve already said: testing is “trivial” for sparse graphs …

• If G is densedense then it’s certainly not planar
• If G is sparsesparse then it’s not ε-far from planar

• Every graph with less than εn2/2 edges is ε-close to
planar: remove all its edges

• How to distinguish between sparse graphs and
dense graphs?

Adjacency matrix modelAdjacency matrix model

Adjacency matrix modelAdjacency matrix model
 How to check if G has much less than How to check if G has much less than εεnn22/2 edges/2 edges

Analysis:
• If G is planar then |E|<3n

Pr[accept] = (1-2|E|/n2) 2/ε > (1-6/n) 2/ε > 2/3

• If |E| > εn2/2 then
Pr[reject] = 1–Pr[accept] = 1-(1-2|E|/n2) 2/ε > 1-(1-ε)2/ε > 1–e-2 > 2/3

Randomly sample 2/ε entries in the adjacency matrix
• If all of them are 0 then accept
• Otherwise reject

2-sided-error O(1/ε)-tester for planarity

Adjacency matrix modelAdjacency matrix model

• All algorithms are of the following form:

 Randomly sample set S of vertices
 Consider subgraph of G induced by S
 If the subgraph satisfies the property  accept
 otherwise  reject

This property may be different from
the original one

(but it’s usually the same)

Adjacency matrix modelAdjacency matrix model

• All algorithms are of the following form:

 Randomly sample set S of vertices
 Consider subgraph of G induced by S
 If the subgraph satisfies the property  accept
 otherwise  reject

Theorem:Theorem: If there is a property testing algorithm for property P
that performs q(n,q(n,εε)) queries to the adjacency matrix

then there is a property testing algorithm for P of the form above
that performs at most O((q(n,O((q(n,εε))))22)) queries to the adjacency matrix

Adjacency matrix modelAdjacency matrix model

Adjacency matrix modelAdjacency matrix model

• We sample O(1/εΟ(1)) random nodes of G
• Call H the graph induced by these nodes

• To prove
– If G is bipartite then H is bipartite

• obviousobvious
– If G is ε–far from bipartite then with prob. > 2/3

graph H is not bipartite
• challengingchallenging

Adjacency matrix modelAdjacency matrix model

• We sample O(1/εΟ(1)) random nodes of G
• Call H the graph induced by these nodes
• If G is ε–far from bipartite then with prob. > 2/3

graph H is not bipartite

• Idea: choose a smaller subset of selected nodes UIdea: choose a smaller subset of selected nodes U
• Show that any bipartition determined by U (U = U1+U2) Show that any bipartition determined by U (U = U1+U2)

with constant probability enforce the bipartition on the with constant probability enforce the bipartition on the
remaining part of H + some edges will clashremaining part of H + some edges will clash

Adjacency matrix modelAdjacency matrix model

• We sample O(1/εΟ(1)) random nodes of G
• Call H the graph induced by these nodes
• If G is ε–far from bipartite then with prob. > 2/3

graph H is not bipartite

• U U ⊆ V(H) – of size t=O(V(H) – of size t=O(ε-1 -1 log (1/log (1/ε))))
• v v ∈ V is V is heavyheavy: deg(v) : deg(v) ¸ ε n/3n/3
• U is good U is good for V if all but at most for V if all but at most εn/3 of the heavy n/3 of the heavy

nodes in V have a neighbor in Unodes in V have a neighbor in U

• Claim: With prob With prob ¸ 5/6 randomly chosen set U is good 5/6 randomly chosen set U is good

Adjacency matrix modelAdjacency matrix model

• U U ⊆ V(H) – of size t=O(V(H) – of size t=O(ε-1 -1 log (1/log (1/ε))))
• v v ∈ V is V is heavyheavy: deg(v) : deg(v) ¸ ε n/3n/3
• U is good U is good for V if all but at most for V if all but at most εn/3 of the heavy n/3 of the heavy

nodes in V have a neighbor in Unodes in V have a neighbor in U

• Claim: With prob With prob ¸ 5/6 randomly chosen set U is good 5/6 randomly chosen set U is good

Adjacency matrix modelAdjacency matrix model

Proof:Proof:
 Pr[heavy node v has no neighbor in U] Pr[heavy node v has no neighbor in U] ≤ (1-(1- ε/3)/3)tt < < ε/18/18
 E[# heavy nodes with no neighbor in U] < E[# heavy nodes with no neighbor in U] < εn/18n/18
 The claim follows now from Markov’s inequalityThe claim follows now from Markov’s inequality

Adjacency matrix modelAdjacency matrix model

• v v ∈ V is V is heavyheavy: deg(v) : deg(v) ¸ ε n/3n/3
• U is good U is good for V if all but at most for V if all but at most εn/3 of the heavy n/3 of the heavy

nodes in V have a neighbor in Unodes in V have a neighbor in U
• Claim: With prob With prob ¸ 5/6 randomly chosen set U is good 5/6 randomly chosen set U is good
• Edge Edge disturbsdisturbs a partition (U a partition (U11,U,U22) of U if both endpoints) of U if both endpoints

are in the same N(Uare in the same N(U ii) for some i) for some i∈{1,2}{1,2}
• Claim: For any good set U and any bipartition of U, at For any good set U and any bipartition of U, at

least least εnn22/3 edges disturb the partition/3 edges disturb the partition

Adjacency matrix modelAdjacency matrix model

Proof:Proof:
Each partition of V has at least Each partition of V has at least εnn22 violating edges violating edges
We upper bound the number of these edges with an endpoint not in N(U):We upper bound the number of these edges with an endpoint not in N(U):

• # edges incident to heavy nodes with no neighbor in U # edges incident to heavy nodes with no neighbor in U ≤ ε nn22/3/3
• # edges incident to non-heavy nodes # edges incident to non-heavy nodes ≤ ε nn22/3/3

There are at least There are at least ε nn22/3 violating edges connecting vertices in N(U)/3 violating edges connecting vertices in N(U)
These edges disturb the partitionThese edges disturb the partition

Adjacency matrix modelAdjacency matrix model

Last step of the proofLast step of the proof

Adjacency matrix modelAdjacency matrix model

Adjacency matrix modelAdjacency matrix model
Open question:

is it possible to test bipartitness
with query complexity o(ε-2)?

Adjacency matrix modelAdjacency matrix model

Very easy example:
• Test if a graph contains a triangle (cycle of length 3)

Highly nontrivial example:
• Test if a graph is triangle-free

Return YES (always)

• Can be done in f(Can be done in f(ε) = O(1) time) = O(1) time
• Proof: deep combinatoricsProof: deep combinatorics

Testing triangle-freenessTesting triangle-freeness

• Test if a graph is triangle-free
• Can be done in f((ε) = O(1)) = O(1) time using

Szemeredi regularity lemma

Szemeredi regularity lemmaSzemeredi regularity lemma

d(A,B) =
edges connecting A and B

|A||B|

d(A’,B’) = γ±δδ

d(A,B) = γ

|A’|>δδ|A| |B’|>δδ|B|

Szemeredi regularity lemmaSzemeredi regularity lemma

Triangle-freeness & Szemeredi lemmaTriangle-freeness & Szemeredi lemma

 Repeat O(f(εε)) times:
choose 3 nodes i.u.r.
if they form a triangle then reject

 accept

Using Szemeredi lemmaUsing Szemeredi lemma

We have to prove that if G is εε–far from triangle-
free then G has Θ(n3) triangles

Find a partition of V into V1,…,Vk with k<f(ε) and
k>>1/ε, such that all but at most δk2 of the pairs
are δ-regular for some constant δ=δ(ε)<< ε

Edge e=(x,y) with x∈Vi and y∈Vj, is usefuluseful if
– Vi ≠ Vj,
– (Vi,Vj) is δ-regular, and
– the density between Vi and Vj is at least ε/15

Szemeredi Regularity Lemma:Szemeredi Regularity Lemma:
For any δδ, any graph G can be partitioned into k, 1/δδ ≤ k ≤ T(δδ), subsets V1,…,Vk of

equal size, such that all but at most δδk2 of the pairs (Vi ,Vj) are δδ-regular

Using Szemeredi lemmaUsing Szemeredi lemma

Find a partition of V into V1,…,Vk with k<f(ε) and
k>>1/ε, such that all but at most of the pairs are
δ-regular for some constant δ=δ(ε)

Edge e=(x,y) with x∈Vi and y∈Vj, is usefuluseful if
– Vi ≠ Vj,
– (Vi,Vj) is δ-regular, and
– the density between Vi and Vj is at least ε/15

Szemeredi Regularity Lemma:Szemeredi Regularity Lemma:
For any δδ, any graph G can be partitioned into k, 1/δδ ≤ k ≤ T(δδ), subsets V1,…,Vk of

equal size, such that all but at most δδk2 of the pairs (Vi ,Vj) are δδ-regular

Lemma: There are less than εn2 non-useful edges

Using Szemeredi lemmaUsing Szemeredi lemma

• Let G be ε–far from triangle free
• Remove all non-useful edges to define graph G’
• Since G has less than εn2 non-useful edges, G’

must has at least one triangle 
– There are three useful edges (x,y), (y,z), (z,x) with

x ∈Vi, y ∈Vj, z∈Vs, such that
• all sets Vi,Vj,Vs are distinct,
• all sets Vi,Vj,Vs are pairwise δ-regular, and

• the density between each pair Vi,Vj,Vs is at least ε/15.

 There are Θ(n3) triangles between Vi,Vj,Vs

Complexity of some propertiesComplexity of some properties

• Is G 2-colorable (bipartite) or is ε-far
– We can test just O(1/O(1/εε)) vertices!

• G contain no clique of size 17?
– We can test just f(1/f(1/εε)) vertices!

• Does G contain no subgraph isomorphic to a given graph with 122
vertices?
– We can test just f(1/f(1/εε)) vertices!

Testing in time independent of the size of GTesting in time independent of the size of G

First order graph propertiesFirst order graph properties

• Any first-order graph property of type 89 is
testable in O(1)=f(ε) time.

• There are first order properties of type 98 that
require superconstant time.

Complexity of some propertiesComplexity of some properties

• We’ve first seen a long series of exciting results
showing that many graph properties can be
tested in f(1/ε) time [independent of the input
size] and then …

General resultGeneral result

• Every hereditary property can be tested in
constant-timeconstant-time!

• Property is hereditaryhereditary if
– Invariant under vertex removal

• bipartitness
• being perfect
• being chordal
• having no induced subgraph H
• …

[Alon & Shapira, 2003-2005]

Main LemmaMain Lemma

Main Lemma:
If G is ε-far from satisfying a hereditary property

P, then whp a random subgraph of size WP(ε) does
not satisfy P

Proof: by a strengthened version of Szemeredi
regularity lemma

Can be extended to hypergraphshypergraphs
– via a strengthened version of Szemeredi regularity

lemma for hypergraphs

Is hereditary needed?Is hereditary needed?

• There is an NP property, which is closed under
edge removal, that cannot be tested with o(n2)
edge queries, even with 2-sided error.

Adjacency matrix modelAdjacency matrix model

• There are very fast property testers
• They’re very simple

– Typical algorithm:

• The analysis is (often) very hard
• We understand this model very well

– mostly because of very close relation to
combinatorics

– Typical running time: (via Szemeredi regularity
lemma)

•Select a random set of vertices USelect a random set of vertices U
•Test the property on the subgraph induced by UTest the property on the subgraph induced by U

Adjacency matrix modelAdjacency matrix model

• There are very fast property testers
• They’re very simple

– Typical algorithm:

• The analysis is (often) very hard
• We understand this model very well

– mostly because of very close relation to
combinatorics

– Typical running time: (via Szemeredi regularity
lemma)

•Select a random set of vertices USelect a random set of vertices U
•Test the property on the subgraph induced by UTest the property on the subgraph induced by U

Adjacency matrix modelAdjacency matrix model

• There are very fast property testers
• They’re very simple

– Typical algorithm:

• The analysis is (often) very hard
• We understand this model very well

– mostly because of very close relation to
combinatorics

– Typical running time: (via Szemeredi regularity
lemma)

•Select a random set of vertices USelect a random set of vertices U
•Test the property on the subgraph induced by UTest the property on the subgraph induced by U

Tower(Tower(Tower(1/Tower(Tower(Tower(1/ε))))))

For For ε=0.5 we have Tower(Tower(Tower(1/=0.5 we have Tower(Tower(Tower(1/ε))) =Tower(65536)))) =Tower(65536)

Adjacency matrix modelAdjacency matrix model

• There are very fast property testers
• They’re very simple

– Typical algorithm:

• The analysis is (often) very hard
• We understand this model very well

– mostly because of very close relation to
combinatorics

• Still: sometimes the runtime is better
O(1/ε), O(1/ε2), O(1/2ε)

•Select a random set of vertices USelect a random set of vertices U
•Test the property on the subgraph induced by UTest the property on the subgraph induced by U

Adjacency matrix modelAdjacency matrix model

• When can we get 1/εO(1) query complexity?

• Alon: For any non-bipartite Hnon-bipartite H, testing the
property of being H-free with 1-sided error
requires (1/ε)Ω(log 1/ε) queries

• For any f(ε) there is a monotone graph property,
which cannot be tested with o(f(ε)) queries and
1-sided error
– Monotone properties are hereditary  have O(1) 1-sided

error testers

Part IIPart II
Adjacency lists modelAdjacency lists model

Testing graph properties in Testing graph properties in
adjacency lists adjacency lists modelmodel

• We consider bounded-degree model
– graph has maximum degree dd [constant]

• Relatively little is known

• Connection to combinatoricscombinatorics!
• Connection to random walksrandom walks!

CS notation:CS notation:

 f(n) = f(n) = O(g(n)) O(g(n)) iff iff 99 k>0 k>0 f(n) = O(g(n) logf(n) = O(g(n) logk k (g(n)))(g(n)))
~

Bounded-degree adjacency list modelBounded-degree adjacency list model

Bounded-degree adjacency list modelBounded-degree adjacency list model

Testing connectivityTesting connectivity

What does it mean that a graph G with maximum
degree at most d is ε-far from connected?

 G has at least εdn/8 connected components
• not enough…we need many small connected

components

Bounded-degree adjacency list modelBounded-degree adjacency list model

Bounded-degree adjacency list modelBounded-degree adjacency list model

Bounded-degree adjacency list modelBounded-degree adjacency list model

Repeat O(O(εε-1 -1 d) d) times:
choose a random vertex v
run BFS from v until either 16/εd+1 vertices

have been visited or the entire
connected component has been visited

if v is contained in a connected component
of size ≤16/εd then rejectreject

acceptaccept

Bounded-degree adjacency list modelBounded-degree adjacency list model

Testing connectivity:Testing connectivity:
Can be done in O(ε-2 d) time

Repeat O(O(εε-1 -1 d) d) times:
 choose a random vertex v
 run BFS from v until either 16/εd+1 vertices have been

visited or the entire connected component has been visited
 if v is contained in a connected component of size ≤16/εd

then rejectreject
acceptaccept

Can be improved to O(ε-1 polylog(ε-1d)) time

Bounded-degree adjacency list modelBounded-degree adjacency list model

• Testing bipartitness (2-colorability)
– Can be done in O(nO(n1/21/2 / / εεO(1)O(1))) time (Goldreich & Ron)~~

Algorithm:Algorithm:
•Select O(1/O(1/εε)) starting vertices
•For each vertex run poly(log n/poly(log n/εε) n) n1/21/2 random walks of length poly(log n/poly(log n/εε))
•If any of the starting vertices lies on an odd-length cycle then rejectreject
•Otherwise acceptaccept

Bounded-degree adjacency list modelBounded-degree adjacency list model

• Testing bipartitness (2-colorability)
– Can be done in O(nO(n1/21/2 / / εεO(1)O(1))) time (Goldreich & Ron)
– Cannot be done faster (Goldreich & Ron)

~~

Bounded-degree adjacency list modelBounded-degree adjacency list model

• Testing bipartitness (2-colorability)
– Can be done in O(nO(n1/21/2 / / εεO(1)O(1))) time (Goldreich & Ron)
– Cannot be done faster (Goldreich & Ron)

~~

Consider two classes of graphs (wlog N – even):
•G1

N: Hamiltonian cycle + a perfect matching on N nodes
•G2

N: Hamiltonian cycle + a perfect matching on N nodes,
but every matching connects two nodes
at odd distance on the Hamiltonian cycle

G2
N is bipartite, and whp G1

N is not; whp G1
N is 0.01-far from bipartite

Then: an algorithm that performs o(n1/2) queries is unable
to distinguish between a graph chosen at random from G1

N

and a graph chosen at random from G2
N :

In both cases, the algorithm is unlikely to encounter a cycle

Bounded-degree adjacency list modelBounded-degree adjacency list model

• Testing 3-colorability

… … requires checking (almost) all vertices and edges!requires checking (almost) all vertices and edges!

For general bounded degree graphs,
testing most of natural properties require
superconstant-time (typically, Ω(n1/2))
or even linear-time

Bounded-degree adjacency list modelBounded-degree adjacency list model

Which properties can be tested in constant time in
the adjacency list model?

Constant time testingConstant time testing

• Even if we cannot test (in constant-time) many
properties for general graphs, we can test them
for large classes of graphs

Non-expanding families of graphsNon-expanding families of graphs

• G=(V,E) is a λλ-expander-expander if
– N(S) ¸ λ |S| for all S ½ V with |S| ¸ |V|/2

• Graph G is C-strongly non-expandingGraph G is C-strongly non-expanding if
– every induced subgraph of G with at least C

vertices is not a (1/log2n)-expanders

Key property:Key property:
non-expanding families of graphs have good separators

Testing in non-expanding families of graphs Testing in non-expanding families of graphs

• In the bounded degree graph model any
hereditary property is testable in constant-time
if the input graph belongs to a C-strongly non-
expanding family of graphs (for some constant C)

Example:Example:
Testing in bounded degree Testing in bounded degree planarplanar graphs graphs

• Testing any hereditary property in planar graphs
of constant degree can be done in constant time
– bipartitness
– being perfect
– being chordal
– having no induced subgraph H
– …

• We’ll sketch a proof that testing hereditary
properties in planar graphs of bounded degree
can be done in constant time

[assuming ε is a constant]

•For a given hereditary property P
We have to design an algorithm that for any

planar graph G of maximum degree d
–will accept G if G satisfies P

–[with prob ¸ 2/3] will reject G if G is ε-far from P

•Algorithm will accept unless it finds a “proof”Algorithm will accept unless it finds a “proof”
that G doesn’t satisfy Pthat G doesn’t satisfy P

We only have to consider graphs
that are ε-far from satisfying the property

How to REJECTREJECT them?
Consider testing a simple

hereditary property – say, being bipartite

Separator of size O(n1/2)

Remove edges incident to separator
And repeat recursively

Until only small connected components left

We’ve removed only a few edges (<< εn)
If the input graph is ε–far then
The obtained graph is ε/2-far!

Obtained graph is ε/2-far from P 
many [constant fraction of] components “prove”

that the graph doesn’t satisfy P

But we don’t know
connected components

If we knew connected componentsIf we knew connected components
we could check if the obtained graph satisfieswe could check if the obtained graph satisfies

the property by sampling the property by sampling ~O(d/~O(d/εε)) random vertices random vertices
and checking their connected componentsand checking their connected components

Obtained graph is ε/2-far from P 
many [constant fraction of] components “prove”

that the graph doesn’t satisfy P

 Property tester!Property tester!

Property testersProperty testers

• One can make this idea to work to design
property testers for planar graphs (of constant
max-degree) for all hereditary propertiesfor all hereditary properties

• Key property: every hereditary property can be
characterized by a set of minimal forbidden
induced subgraphs

• Hence: we only have to check if these subgraphs
don’t exist in small components

For example:
no-bipartite = has a cycle of odd length
no-chordal = has a cycle of length > 3

Property testersProperty testers

• One doesn’t need planar graphs:
– It’s enough to have some separator propertiessome separator properties

• Works for all C-strongly non-expanding familiesC-strongly non-expanding families
of graphs

Non-expanding graphsNon-expanding graphs

• G=(V,E) is a λλ-expander-expander if
– N(S) ¸ λ |S| for all S ½ V with |S| ¸ |V|/2

• Graph G is C-strongly non-expandingGraph G is C-strongly non-expanding if
– every induced subgraph of G with at least C

vertices is not a (1/log2n)-expanders

Non-expanding graphs vs. separatorsNon-expanding graphs vs. separators

Let G=(V,E) be a C-strongly non-expanding graph of
maximum degree d. Let k be an arbitrary
parameter, k>0.

If n = |V| ̧ max{2C,22/k2} then one can partition V
into V1 and V2 such that
– |V1|, |V2| ̧ n/4 and
– e(V1,V2) ≤ kdn / log1.5n.

Non-expanding graphs vs. separatorsNon-expanding graphs vs. separators

For every C-strongly non-expanding graph G=(V,E)
of maximum degree d there exists a positive
constant c such that one can remove from G at
most εdn/2 edges such that

• their removal partitions G into connected
components C1,C2,… of size at most 2c/ε2 each,

• each connected component Ci is an induced
subgraph of G, and

• no edge connects in G two non-trivial connected
components Ci and Cj.

TesterTester

choose a random sample S of vertices
|S| = O(1) – depending on d, ε, graph

family, property to be tested
for each vertex v in S

let Nr[v] be the r-th neighborhood of v
r = O(1) – depending on d, ε, graph family,
property to be tested

If the graph induced by v2SNr[v] satisfies
the property then ACCEPT

else REJECT

Complexity of the testerComplexity of the tester

• Complexity is O(1) for constant d and ε
• Dependency on d and ε is low
• But dependency on hereditary property/graph

family might be large (but it’s an absolute
constant)

• All depend on the properties at hand
– Testing planar graphs for “basic” hereditary

properties (k-coloring, chordal, perfect, no induced
subgraph H) in time 2(d/ε)O(1)

• [Think: very fast when comparing to “constant-
time” bounds for adjacency matrix model]

O(1) testing in adjacency list model?O(1) testing in adjacency list model?

• Very few properties known (for general graphs)
– connectivity
– k-connectivity
– H-freeness
– …
– very few more

This was the state of the art until 5-6 months ago.This was the state of the art until 5-6 months ago.
Now: Now: Every minor-closed property is testable with Every minor-closed property is testable with O(1)O(1) queries queries

Benjamini, Schramm, Shapira, STOC’2008Benjamini, Schramm, Shapira, STOC’2008

Constant time testing !Constant time testing !

So: how come could we test planarity by So: how come could we test planarity by
checking only subgraphs of constant size?checking only subgraphs of constant size?

For each subgraph of constant size,For each subgraph of constant size,
check the number of its occurrences in Gcheck the number of its occurrences in G
No all frequencies are possible in planar graphs!No all frequencies are possible in planar graphs!

For example, there are graphs on ω(n)
nodes with ω(1) girth

Checking planarity in constant timeChecking planarity in constant time

Let Fdk be the family of all connected graphs of maximum degree d
on at most k vertices

Let Fdk[G] be the characteristic vector of length |Fdk| such that if
H is the ith element of Fdk then the ith element of the vector
equals the number of occurrences of H as an induced subgraph
of G

Theorem: If G is ε-far from planar then its vector Fdk[G]
significantly differ from Fdk[G’] any planar graph G’

Testing planarity ~ checking the characteristic vector Fdk[G]

We don’t need to know the exact values of the vector:
approximation is enough

Checking planarity in constant timeChecking planarity in constant time

Let Fdk be the family of all connected graphs of maximum degree d
on at most k vertices

Let Fdk[G] be the characteristic vector of length |Fdk| such that if
H is the ith element of Fdk then the ith element of the vector
equals the number of occurrences of H as an induced subgraph
of G

Testing planarity ~ checking the characteristic vector Fdk[G]
We don’t need to know the exact values of the vector:

approximation is enough
Randomly sample O(1) vertices
For each sampled vertex v

run BFS from v of O(1) depth
let H_v be the obtained graph

Accept or reject G using only graphs Hv to estimate Fdk[G]

Extension: all minor-closed propertiesExtension: all minor-closed properties

• Every minor-closed property can be tested in a
similar way

• Minor-closed properties include:
– Planar,
– Outer-planar,
– Series-parallel,
– Bounded-genus,
– bounded tree-width,
– …

• Minor = obtained by edge/vertex removal + edge contractions
• P is minor-closed if every minor of a graph in P is also in P

These techniques don’t work for arbitrary-These techniques don’t work for arbitrary-
degree graphsdegree graphs

Testing planarity in arbitrary degree graphs
requires Ω(n1/2) time

Open problem: can it be done in O(n1/2) time?

Future of Property TestingFuture of Property Testing

We need general results

Relation to
• approximation algorithms
• distributed algorithms
• streaming algorithms

ConclusionsConclusions

• Modern applications need very fast algorithms

• Property testing:
– Framework to study graph/network properties
– Can be used to design some very fast testers

• Key questions:
– Which problems/properties can be tested

efficiently?

• Beautiful and nontrivial mathematics behind

ReferencesReferences

Surveys:
• E. Fischer. The art of uninformed decisions: A primer to property testing. Bulletin

of the EATCS, 75: 97–126, October 2001.
• O. Goldreich. Property testing in massive graphs. In J. Abello, P. M. Pardalos, and

M. G. C. Resende, editors, Handbook of Massive Data Sets, pp. 123–147. Kluwer
Academic Publishers, 2002.

• R. Kumar and R. Rubinfeld. Sublinear time algorithms. SIGACT News, 34: 57–67,
2003.

• D. Ron. Property testing. In P. M. Pardalos, S. Rajasekaran, J. Reif, and J. D. P.
Rolim, editors, Handobook of Randomized Algorithms, volume II, pp. 597–649.
Kluwer Academic Publishers, 2001.

• A. Czumaj and C. Sohler. Sublinear-time algorithms. Bulletin of the EATCS, 89: 23–
47, June, 2006.

ReferencesReferences

Key papers:
• N. Alon and A. Shapira. A characterization of the (natural) graph properties testable with one-sided error. N. Alon and A. Shapira. A characterization of the (natural) graph properties testable with one-sided error.

SIAM Journal on ComputingSIAM Journal on Computing, 37(6): 1703-1727, 2008., 37(6): 1703-1727, 2008.
• I. Benjamini, O. Schramm, and A. Shapira. Every minor-closed property of sparse graphs is testable. I. Benjamini, O. Schramm, and A. Shapira. Every minor-closed property of sparse graphs is testable.

Proceedings of the 40th Annual ACM Symposium on Theory of Computing (STOC)Proceedings of the 40th Annual ACM Symposium on Theory of Computing (STOC), pp. 393–402, , pp. 393–402,
2008.2008.

• A. Czumaj and C. Sohler. On testable properties in bounded degree graphs. A. Czumaj and C. Sohler. On testable properties in bounded degree graphs. Proceedings of the 18th Proceedings of the 18th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA)Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 494–501, 2007., pp. 494–501, 2007.

• O. Goldreich, S. Goldwasser, and D. Ron. Property testing and its connection to learning and O. Goldreich, S. Goldwasser, and D. Ron. Property testing and its connection to learning and
approximation. approximation. Journal of the ACMJournal of the ACM, 45(4): 653–750, 1998., 45(4): 653–750, 1998.

• O. Goldreich and D. Ron. Property testing in bounded degree graphs. O. Goldreich and D. Ron. Property testing in bounded degree graphs. AlgorithmicaAlgorithmica, 32(2): 302–343, , 32(2): 302–343,
2002.2002.

• N. Alon, E. Fischer, I. Newman, and A. Shapira. A combinatorial characterization of the testable graph
properties: it’s all about regularity. Proceedings of the 38th Annual ACM Symposium on Theory of
Computing (STOC), pp. 251–260, 2006.

• A. Czumaj and C. Sohler. Abstract combinatorial programs and efficient property testers. SIAM Journal
on Computing, 34(3): 580–615, 2005.

• O. Goldreich and D. Ron. A sublinear bipartiteness tester for bounded degree graphs. Combinatorica,
19(3):335–373, 1999.

Problems for studentsProblems for students

Using Szemeredi lemmaUsing Szemeredi lemma

Find a partition of V into V1,…,Vk with k<f(ε) and
k>>1/ε, such that all but at most of the pairs are
δ-regular for some constant δ=δ(ε)<< ε

Edge e=(x,y) with x∈Vi and y∈Vj, is usefuluseful if
– Vi ≠ Vj,
– (Vi,Vj) is δ-regular, and
– the density between Vi and Vj is at least ε/15

Szemeredi Regularity Lemma:Szemeredi Regularity Lemma:
For any δδ, any graph G can be partitioned into k, 1/δδ ≤ k ≤ T(δδ), subsets V1,…,Vk of

equal size, such that all but at most δδk2 of the pairs (Vi ,Vj) are δδ-regular

Lemma: There are less than εn2 non-useful edges

Using Szemeredi lemmaUsing Szemeredi lemma

• Let G be ε–far from triangle free
• Remove all non-useful edges to define graph G’
• Since G has less than εn2 non-useful edges, G’

must has at least one triangle 
– There are three useful edges (x,y), (y,z), (z,x) with

x ∈Vi, y ∈Vj, z∈Vs, such that
• all sets Vi,Vj,Vs are distinct,
• all sets Vi,Vj,Vs are pairwise δ-regular, and

• the density between each pair Vi,Vj,Vs is at least ε/15.

 There are Θ(n3) triangles between Vi,Vj,Vs

Non-expanding graphs vs. separatorsNon-expanding graphs vs. separators

Non-expanding graphs vs. separatorsNon-expanding graphs vs. separators

For every C-strongly non-expanding graph G=(V,E)
of maximum degree d there exists a positive
constant c such that one can remove from G at
most εdn/2 edges such that

• their removal partitions G into connected
components C1,C2,… of size at most 2c/ε2 each,

• each connected component Ci is an induced
subgraph of G, and

• no edge connects in G two non-trivial connected
components Ci and Cj.

Testing connectivityTesting connectivity

• In the bounded-degree model with adjacency
lists, design a property testing algorithm for
connectivity with the running time

O(ε-1 polylog(ε-1/d))

MSTMST

• Let G=(V,E) be an edge-weighted graph and
suppose that all edges are in {1,2}.

• Let c(i) = #connected components of the
subgraph of G induced by edges of weight at
most i

• Show that MST(G) = n-2+c(1)

MSTMST

• Let G=(V,E) be an edge-weighted graph and
suppose that all edges are in {1,2,…,W}.

• Let c(i) = #connected components of the
subgraph of G induced by edges of weight at
most i

• Show that MST(G) = n-W+c(1)+c(2)+…+c(W-1)

• How could you use this approach to estimate the
cost of MST(G)?

Approximating #connected componentsApproximating #connected components

choose vertices u1, …, us at random
for each vertex i do

– choose X according to Pr[X ¸ k] = 1/k
– Run BFS starting at ui until either

1. Entire connected component containing ui has been explored, or
2. X vertices have been explored

– If BFS stopped in case 1 then bi = 1
– else bi = 0

Output estest = n/s ∑i bi
•Compute E[bi] and Var[bi]
•Compute E[est] and Var[est]
•Compute Pr[|est-E[est]| ≤ λn]
•Use this to estimate the cost of MST

